Avances en la fisiología digestiva del robalo blanco (Centropomus undecimalis) en Tabasco, México

Authors

  • Carlos Alfonso Alvarez-González Laboratorio de Acuicultura Tropical, DACBIOL-UJAT
  • Gabriela Gaxiola-Cortés UNAM
  • Luis Daniel Jiménez-Martínez Laboratorio de Acuicultura Tropical, DACBIOL-UJAT
  • Adolofo Sanchez-Zamora UNAM
  • Leticia Arena-Ortiz UNAM
  • Talhía Martínez-Bruguete Laboratorio de Acuicultura Tropical, DACBIOL-UJAT
  • Dariel Tovar-Ramírez Centro de Investigaciones Biológicas del Noroeste
  • Bartolo Concha-Frías Universidad Católica del Norte
  • Gabriel Márquez-Couturier Laboratorio de Acuicultura Tropical, DACBIOL-UJAT
  • Natalia Perales-García Laboratorio de Acuicultura Tropical, DACBIOL-UJAT
  • Gloria Gertrudys Asencio-Alcudia Laboratorio de Acuicultura Tropical, DACBIOL-UJAT
  • Fidel Jesús-Ramírez Laboratorio de Acuicultura Tropical, DACBIOL-UJAT

Keywords:

Enzimas digestivas, Digestibilidad in vitro, Expresión génica

Abstract

El robalo blanco (Centropomus undecimalis, Bloch) es un pez marino de alto valor comercial en el Sureste de México, por lo cual ha sido sobreexplotado mermando sus poblaciones. De esta manera, se han iniciado los estudios para desarrollar su cultivo, donde el entendimiento de la fisiología digestiva permitirá implementar alimentos artificiales que logren mejorar el crecimiento y supervivencia durante su cultivo. El objetivo de esta investigación es evaluar la capacidad digestiva de C. undecimalis utilizando técnicas bioquímicas y moleculares. Se tomaron muestras de larvas y juveniles de C. undecimalis para realizar diversos estudios sobre los cambios de las enzimas digestivas (proteasas, lipasas, amilasas y fosfatasas) y su expresión molecular (tripsina, lipasa y ubiquitina), la caracterización de proteasas por medio de técnicas bioquímicas y electroforéticas, así como la digestibilidad in vitro de ingredientes y alimentos artificiales usando el método de pH STAT. El pH óptimo de proteasas ácidas se encuentra en 2 con alta estabilidad entre 2 y 8, mientras que la temperatura óptima es de 75ºC con altas estabilidades de 25 a 55ºC, la cual fue inhibida en 86% con pepstatín A. Para las proteasas alcalinas el óptimo de pH y temperatura fueron de 7 a 11 y 65ºC respectivamente, mostrando una elevada resistencia a los cambios de pH y temperatura (4-10 y 35-65ºC respectivamente). Estas proteasas se inhibieron con PMSF (60%), ovoalbúmina (59%), SBT1 (41%), TLCK (68%), y TPCK (17%), indicando la presencia de serina proteasas, mientras que las metalo proteasas se inhibieron en 40% con EDTA y 85% con 1-10 fenantrolina. El grado de hidrólisis de ingredientes proteínicos mostró que la harina de jaiba, sardina, puerco y sangre de res tienen altos valores para las fases ácidas y alcalinas, además que la liberación de aminoácidos fue mayor con la harina de sardina para la fase ácida y del hidrolizado de pescado para la fase alcalina. Durante la ontogenia inicial, la tripsina, quimotripsina, L-aminopeptidasa, carboxypeptidasa A, lipasa, amilasa y fosfatasas están presentes desde la absorción del vitelo (1 días post-eclosión, dpe), mostrándose dos picos de actividad entre los 12 y 25 dpe. La Pepsina fue detectada del 34 dpe en adelante. Los zimogramas muestran dos bandas, la primera (26.1 kDa) a los 25 dpe, y la segunda (51.6 kDa) a los 36 dpe. El zimograma de proteasa ácida muestra dos bandas (0.32 y 0.51 rf´s) a los 34 dpe. Finalmente, a partir de tejidos de juveniles se lograron amplificar los genes de tripsina, lipasa y ubiquitina, los cuales muestran altas similitudes (>85%) con los mismos genes de otros peces al utilizar el BLAST. De esta manera, el conocimiento de la fisiología digestiva de C. undecimalis es similar a la de otros peces marinos de hábitos alimenticios carnívoros.

Downloads

Download data is not yet available.

References

Adler-Nissen J. (1976) Enzymatic hydrolysis of proteins for increased solubility. Journal of Agriculture Food and Chemistry 24, 1090-1093.

Alarcon F.J., Díaz M., Moyano F.J. & Abellan E. (1998) Characterization and functional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiology and Biochemistry 19, 257–267.

Alarcón F.J. (1997) Procesos digestivos en peces marinos: Caracterización y aplicaciones prácticas. Tesis de Doctorado, Universidad de Almería, España. 187 p.

Alarcón, F.J., F.J. Moyano & M. Díaz (2002) Evaluation of different protein sources for aquafeeds by an optimised pH-STAT system. Journal of the Science of food and Agriculture 82, 697-704.

Alarcón F.J., F.J. Moyano & M. Díaz (1999) Effect of inhibitors present in protein sources on digestive proteases of juveniles sea bream (Sparus aurata). Aquatic Living Resourses 12 (4), 233-238.

Alarcón F.J., F.J. Moyano & M. Díaz (2001a) Use of SDS-page in the assessment of protein hydrolysis by fish digestive enzymes. Aquaculture International 9, 255-267.

Alarcón F.J., F.L. García-Carreño & M.A.N. del Toro (2001b) Effect of plant protease inhibitors on digestive proteases in two fish species, Lutjanus argentiventris and L. novemfasciatus. Fish Physiology and Biochemistry 24, 179–189.

Alarcón F.J., J.M. Díaz, F.J. Moyano & E. Abellán (1998) Characterization and functional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiology and Biochemistry 19, 257-267.

Alencar R.B., M.M. Biondi, P.M. G. Paiva, V.L. A. Vieira, L.B. Carvalho Jr. & R. S. Bezerra (2003) Alkaline Proteases from the Digestive Tract of Four Tropical Fishes. Brazilian Journal of Food and Technology 6 (2), 279-284.

Alvarez-González C.A. (2003) Actividad enzimática digestiva y evaluación de dietas para el destete de larvas de la cabrilla arenera Paralabrax maculatofasciatus (Percoidei: Serranidae). Tesis doctoral, IPN-CICIMAR. 180 p.

Alvarez-González C.A., Cervantes-Trujano M., Tovar-Ramírez D., Conklin D.E., Nolasco H., Gisbert E., & Piedrahita R. (2006) Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiology and Biochemistry 31, 83-93.

Alvarez-González C.A., Moyano-López F.J., Civera-Cercedo R., Carrasco-Chávez V., Ortiz-Galindo J., & Dumas S. (2008) Development of digestive enzyme activity in larvae of spotted sand bass (Paralabrax maculatofasciatus). I: Biochemical analysis. Fish Physiology and Biochemistry 34, 373–384.

Alvarez-González CA, Moyano-López FJ, Civera-Cercedo R, Carrasco-Chávez V, Ortiz-Galindo J, Nolasco-Soria H, Tovar-Ramirez D, Dumas S (2010). Development of digestive enzyme activity in larvae of spotted sand bass (Paralabrax maculatofasciatus) II: Electrophoretic analysis. Fish Physiology and Biochemistry 36, 29–37.

Alvarez-Lajonchère L., Cequeira R.V. & Dos Reis M. (2002) Desarrollo embrionario y primeros estadios larvales del robalo chucumite, Centropomus parallelus Poey (Pices: Centropomidae) con interés para su cultivo. Hidrobiológica 12 (2): 89-100.

Álvarez-Lajonchère L. & Taylor R.G. (2003) Economies of scale for juvenile production of commom snook (Centropomus undecimalis Bloch). Aquaculture Economics and Management 7 (5/6), 273-291.

Álvarez-Lajonchère L. & Tsuzuki M.Y. (2008) A review of methods for centropomus spp. (snooks) aquaculture and recommendations for the establishment of their culture in Latin America. Aquaculture Research 39, 684-700.

Álvarez-Lajonchère L. (2001) Fat snook breakthrough in Brasil. Magazine World Aquaculture March, 23-25.

Andrews A. T. 1995. Electrophoresis: Theory, techniques, biochemical and clinical applications. Clarendon Press. Oxford, Great Britain. 452 p.

Anónimo (2002) La Pesquería de robalo del Golfo de México. Manuales de la Secretaría de Pesca, México, pp. 773-792.

Anson M.L. (1938) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. Journal of Genetic Physiology 22, 79-89.

Applebaum S.L., R. Perez, J.P. Lazo & G.J. Holt. (2001) Characterization of chymotrypsin Activity during early ontogeny of larval red drum (Sciaenops ocellatus), Fish Physiology and Biochemistry 25, 291–300.

Apsmo I.S., S.J. Horn & V.G.H. Eijsink. (2005) Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry 40, 1957-1966.

Arévalo-Galán L.M. (2009) Expresión del gen de tripsina durante la ontogenia inicial de la mojarra tenguayaca Petenia splendida. Tesis de Licenciatura. UJAT. 60 p.

Ásgeirsson B., R. Hartemink & J. F. Chlebowski. (1995) Alkaline phospahtase from atlantic cod (Gadus morhua). Kinetic and structural properties wich indicate adaptation to low temperatures. Comparative Biochemistry and Physiology 110B, 315-329.

Àvalos-Sánchez A.M. (2006) Digestibilidad in vitro de Dietas con Diferentes Combinaciones de Ligantes Diseñadas para Larvas y Juveniles de Pescado blanco del Lago de Pàtzcuaro Chirostoma estor estor (Jordan, 1879). Tesis de Licenciatura. Facultad de Biología. UMSNH. 52 p.

Avilés-Quevedo A., McGregor-Pardo U., Rodríguez-Ramos R., Morales-Castro O., Huerta-Bello M. & Hizawa M. (1995) Biología y cultivo de la cabrilla arenera Paralabrax maculatofasciatus (Steindachner,1868). Secretaría de Pesca. Instituto Nacional de la Pesca. JICA. México, 85 p.

Baglole C.J., Goff G.P. & Wright G.M. (1998) Distribution and ontogeny of digestive enzymes in larval yellowtail and winter flounder. Journal of Fish Biology 53, 767-784.

Barros A., F. J. Alarcón, F. J. Moyano & T.F. Martínez. (2002) Efecto de la suplementación de fitasa sobre la hidrólisis in vitro de la proteina en trucha arcoiris Oncorhynchus mykiss (Walbaum, 1972). Boletín del Instuto Español de Oceanografía 18 (1-4), 95-98.

Behal F.J., B. Asserson, F. Dawson & J. Hardman. (1965) A study of human tissue aminopeptidase components. Archives of Biochemistry and Byophysic 111, 335-344.

Benkel B.F., Nguyen T., Ahluwalia N., Benkel KI. & Hickey D.A. (1997) Cloning and expression of a chicken alpha-amylase gene. Gene 192, 261-270.

Bergmeyer H.V. (1974) Phosphatases. Methods of enzymatic analysis, vol 2. Academic Press.

Bezerra R.S., E.J.F. Lins, R.B. Alencar, P.M.G. Paiva, M.E.C. Chaves, L.C.B.B. Coelho & L.B. Carvalho Jr. (2005) Alkaline proteinase from intestine of Nile tilapia (Oreochromis niloticus). Process in Biochemistry 40, 1829-1834.

Bleir P.U., H. Lemieux & R.H. Devlin. (2002) Is the growth rate of fish set by digestive enzymes or metabolic capacyty of the tissues? Insight from transgenic coho salmon. Aquaculture 209, 379-384.

Bórquez A. & V. R. Cerqueira. (1998) Feeding behavior in juvenile snook, Centropomus undecimalis. I. Individual effect of some chemical substances. Aquaculture 169, 25-35.

Bradford M.M. (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Anals of Biochemistry 72, 248-254.

Brock D., Robinette H.R. & Heinen J. (1992) Culture system for evaluating live and formulated diets for larval fish. Progresive Fish Culturist 54, 270-273.

Buchet V., Zambonino-Infante J.L. & Cahu C. (2000) Effect of lipid level in a compound diet on the development of red drum (Sciaenops ocellatus) larvae. Aquaculture 184, 339-347.

Cahu C.L., Ronnestad I., Grangier V. & Zambonino-Infante J.L. (2004) Expression and activities of pancreatic enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact y hydrolyzed dietary protein; involvement of cholecystokinin. Aquaculture 238, 295-308.

Cahu C.L. & Zambonino-Infante J.L. (1995) Maturation of the pancreatic and intestinal function in sea bass (Dicentrarchus labrax): effect of weaning with different protein sources. Fish Physiology and Biochemistry 14, 431-437.

Cahu C.L. & Zambonino-Infante J.L. (1994) Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comparative Biochemistry and Physiology 109A, 213-222.

Cahu C.L. & Zambonino-Infante J.L. (1997) Is the digestive capacity of marine fish larvae sufficient for compound diet feeding? Aquaculture International 5, 151-160.

Camacho D.R.B., M.J.M. Álvarez, D. García, C. Medina & A. Sidorovas. (2007) Caracterización de un hidrolizado proteico enzimático obtenido del pez caribe colorado (Pygocentrus cariba Humboldt, 1821). Interciencia 32 (3), 188-193.

Camacho Z., J.R. Brown & G. B. Kitto. (1970) Purification and properties of trypsin-like proteases from the starfish Dermasterias imbricata. The Journal of biological chemistry 245 (15), 3964-3972.

Cara J.B., Moyano F.J., Cardenas S., Fernandez-Diaz C. & Yufera M. (2003) Assessment of digestive enzyme activities during larval development of white bream. Journal of Fish Biology 63, 48-58.

Castillo-Yañez F.J., R. Pacheco-Aguilar, F.L. Garcia-Carreño & M.A. Navarrete-Del Toro. (2004) Characterization of acidic proteolytic enzymes from Monterey sardine (Sardinops sagax caerulea) viscera. Food Chemistry 85, 343–350.

Castro-Aguirre J.L., H.E. Pérez & J.J. Schmitter-Soto. (1999) Ictiofauna Estuarino-Lagunar y Vicaria de México, Editorial Limusa, Primera Edición, México, 625 p.

Catacutan M. R. & R.M. Coloso. (1995). Effect of dietary protein to energy ratios on growth, survival, and body composition of juvenile Asian seabass, Lates calcarifer. Aquaculture 131, 125-133.

Cequeira R.V. & Brügger A.M. (2001) Effect of light intensity on initial survival of fat snook (Centropomus parallelus, Pisces: Centropomidae) larvae. Brazilian Archives of Biology and Technology International Journal 44(4), 343-349.

Chakrabarti R., Rathore R.M., Kumar S. (2006a) Study of digestive enzyme activities and partial characterization of digestive proteases in a freshwater teleost, Labeo rohita, during early ontogeny. Aquaculture Nutrition 12, 35-43.

Chakrabarti R., R.M. Rathore, P. Mittal & S. Kumar. (2006b). Functional changes in digestive enzymes and characterization of proteases of silver carp (♂) and bighead carp (♀) hybrid, during early ontogeny. Aquaculture 253, 694–702.

Chávez H. (1961) Estudio de una nueva especie de robalo del golfo de México y redescripción de Centropomus undecimalis (Bloch) (Pisces: Centropomidae). Ciencia XXI (2), 177-199.

Chen B.N., Jian G.Q., Martin S.K., Wayne G.H. & Steven M.C. (2006) Ontogenetic development of digestive enzymes in yellowtail kingfish Seriola lalandi larvae. Aquaculture 256, 489-501.

Cheung A.L., P. Yung & V.A. Fschetti. (1991) A method to detect proteinase activity using unprocesed X-ray films. Annals of Biochemistry 193, 20-23.

Chong A.S., Hashim R., Chow-Yang L. & Ali A.B. (2002a) Partial characterization and activities of proteases from the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture 203, 321-333.

Chong A.S., Hashim R. & Ali A.B. (2002b) Inhibition of protease activities in Discus Symphysodon spp. By three plant meals. Aquaculture International 10, 433-441.

Chong-Carrillo O. & Vega-Villasante F, (2003). El dicamarón: Diccionario de camaronicultura. Versión 1.0, CIBNOR-Universidad de la Habana.

Chong A.S.C., R. Hashim, L. Chow-Yang & A.B. Ali. (2002a) Partial characterization and activities of proteases from the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture 203, 321–333.

Chong A., R. Hashim & A. Bin Ali. (2002b) Inhibition of protease activities in Discus Symphysodon spp. By three plant meals. Aquaculture International 10, 433-441.

Church F.C., H.E. Swaisgood, D.H. Porter & G. Catignani. (1983) Spectrophotometric assay using o-phthaldehyde for determination of proteolysis in milk proteins. Journal of Dairy Science 66, 1219-1227.

Civera-Cerecedo R., C.A. Álvarez-González, R.E.García-Gómez, V. Carrasco-Chávez, J.L. Ortiz-Galindo, M.O. Rosales-Velázquez, T. Grayeb-Del Álamo & F.J. Moyano-López. 2008. Effect of micro-particulate diets on growth and survival of spotted sand bass larvae Paralabrax maculatofasciatus at two early weaning times. Journal of the World Aquaculture Society 39(1), 22-36.

Cohen T., Gertler A. & Birk Y (1981) Pancreatic proteolytic enzymes from carp (Cyprinus carpio): 1. Purification and physical properties of trypsin, chymotrypsin, elastase and carboxypeptidase B. Comparative Biochemistry and Physiology 69B(3), 639-646.

Concha-Frías B. (2008) Evaluación de la capacidad digestiva de juveniles de Centropomus undecimalis (bloch, 1792) sobre diferentes ingredientes proteínicos. Tesis de Maestría, Universidad Catolica del Norte de Chile. 109 p.

Copeland R.A. (1996) Structural components of enzymes. In: Enzymes, a practical introduction to structure, mechanism and data analysis. Wiley, New York, pp 35-65.

Córdova-Murueta J.H. & F. L. García-Carreño. (2002) Nutritive value of squid and hydrolyzed protein supplement in shrimp feed. Aquaculture 210, 371-384.

Cousin J.C.B., Baudin-Laurencin F. & Gabaudan J. (1987) Ontogeny of enzymatic activities in fed y fasting turbot, Scophthalmus maximus L. Journal of Fish Biology 30, 15-33.

Darias M.J., Murria H.M., Gallant J.W., Astola A., Douglas S.E., Yufera M. & Martínez-Rodríguez G. (2006) Characterization of a partial -amylase clone from red porgy (Pagrus pagrus): Expression during larval development. Comparative Biochemistry and Physiology 143B, 209-218.

Darnis S., Juge N., Guo X.J., Marchis-Mouren G., Puigserver A. & Chaix J.C. (1999) Molecular cloning and primary structure analysis of porcine pancreatic alpha-amylase. Biochimia et Biophysic Acta 1430, 281-289.

Das K.M. & S.D. Tripathi. (1991) Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture 92, 21-32.

Davis B.J. (1964) Disc electrophoresis II. Method and application to human serum proteins. Annals New York Academic Science 121, 404-427.

De-Vecchi S.D. & Coppes Z. (1996) Marine Fish digestive proteases relevance to food industry and South West Atlantic region -a review. Journal of Food Biochemistry 20, 193-214.

Díaz-López M., Moyano-López F.J., Alarcón-López F.J., García-Carreño F.L. & Navarrete del Toro, M.A. (1998) Characterization of fish acid proteases by substrate-gel electrophoresis. Comparative Biochemistry and Physiology 121B, 369-377.

Diccionario Esencial de las Ciencias (2000) Real Academia de Ciencias Exactas, Físicas y Naturales. ESPASA, Madrid, España, 1022 p.

Dimes L.E., García-Carreño F.L. & Haard N.F. (1994a) Estimation of protein digestibility. III. Studies on digestive enzyme from the pyloric caeca of rainbow trout and salmon. Comparative Biochemistry and Physiology 109, 349-360.

Dimes L.E. & N.F. Haard. (1994) Estimation of protein digestibility: I. Development of an in vitro method for estimating protein digestibility in salmonids (Salmo gairdneri). Comparative Biochemistry and Physiology 108A(2-3), 349-362.

Dimes L.E., N.F. Haard, F.M. Dong, B.A. Rasco, I.P. Forster, W.T. Fairgrieve, R. Arndt, R.W. Hardy, F.T. Barrows & D.T. Higgs. (1994b). Estimation of protein digestibility. II. In vitro assay of protein in salmonid feeds. Comparative Biochemistry and Physiology 108A, 363-370.

Dixon M. & E. Webb. (1979) Enzymes. Academic Press 3th. New York.

Donovan P.D., M.H. Horn & A. Gawlicka. 2004. Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiological and Biochemical Zoology 77 (5), 789-804.

Douglas S.E., Gallant J.W. & Bullerwell C.E. (1999) Molecular investigation of aminopeptidase N expression in the winter flounder, Pleuronectes americanus. Journal of Applied Ichtyology 15(2), 80-86.

Douglas S.E., Mandla S. & Gallant J.W. (2000) Molecular analysis of the amylase gene and its expression during development in the winter flounder, Pleuronectes americanus. Aquaculture 190, 247-260.

Dumermuth E., J. Bond, A. Flannery & R. Beynon. (1991) The astacin famuly of metalloendopeptidases. Journal of Biology and Chemistry 266, 21831-21835.

Dunn B.M. (1989) Determination of protease mechanism. pp. 57-81. In: Proteolytic Enzymes: A practical approach. I R.J. Beynon y J.S. Bond (Eds.).R.L. Press, Oxford, England.

Eid A.E. & A.J. Matty. (1989) A simple in vitro method for measuring protein digestibility. Aquaculture 79, 111-119.

El-Sayed A.F.M. (1998) Total replacement of fish meal with animal protein sources in Nile tilapia, Oreochromis niloticus (L.), feeds. Aquaculture Research 29, 275-280.

El-Sayed A.F.M., I.N. Martínez & F.J. Moyano. (2000) Assessment of the effect of plant inhibitors on digestive proteases of nile tilapia using in vitro assays. Aquaculture International 8, 403–415.

Erlanger B., Kokowsky N. & Cohen W. (1961) The preparation and properties of two new chromogenic substrates of trypsin. Archives of Biochemistry and Biophysic 95, 271-278.

Essed Z., Fernández I., Alarcón F.J. & Moyano F.J. (2002) Caracterización de la actividad proteasa digestiva de atún rojo Thunnus thynnus (Linnaeus, 1758). Boletin del Instituto Español de Oceanografía 18(1-4), 99-107.

Ezquerra J.M., F.L. García-Carreño, R. Civera & N.F. Haard. (1997) pH-STAT method to predict protein digestibility in white shrimp (Penaeus vannanei). Aquacuture 157, 251-262.

Fabillo M.D., Herrera A.A. & Abucay J.S. (2004) Effects of delayed first feeding on the development of the digestive tract y skeletal muscles of Nile Tilapia, Oreochromis niloticus L. , pp. 301-315 In: Proceedings 6th International Symposium on Tilapia in Aquaculture Philippine International Convention Center Roxas Boulevard, Manila, Philippines.

Fange R. & Grove D. (1979) Digestion, pp. 161-260. In: Hoar WS, Randall DJ, Brett JR (eds) Fish Physiology. Vol. 8, Academic Press. NY.

FAO (2006) Examen mundial de la pesca y la acuicultura. (http://www.fao.org/docrep/009/a0699s/A0699S04.htm).

FAO (2010) Fisheries and Aquaculture Information and Statistics Service. 2010. Aquaculture production 1950-2008. FISHSTAT Plus - Universal software for fishery statistical time series [online or CD-ROM]. Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/fishery/statistics/software/fishstat/en.

Fenerci S. & E. Sener. (2005) In vivo and In vitro protein digestibility of rainbow trout (Oncorhynchus mykiss Walbaum, 1972) fed steam pressured or extruded feeds. Turkish Journal of Fisheries and Aquatic Sciences 5, 17-22.

Folk J.E. & Schirmer E.W. (1963) The porcine pancreatic carboxypeptidase α system. Journal of Biology and Chemistry 238, 3884-3894.

Ford J.E. & D.N. Salter. (1966) Analysis of enzymatically digested food proteins by Sephadex-gel filtration. Brazilian Journal of Nutrition 20, 843-860.

Francis G., H.P.S. Makkar & K. Becker. (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199(3-4), 197-227.

Fu X., C. Xue, B. Miao, Z. Li, X. Gao & W. Yang. (2005) Characterization of proteases from the digestive tract of sea cucumber (Stichopus japonicus): high alkaline protease activity. Aquaculture 246, 321-329.

Furné M., M.C. Hidalgo, A. López, M. García-Gallego, A.E. Morales, A. Domezain, J. Domezainé & A. Sanz. (2005) Digestive enzyme activities in adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study. Aquaculture 250, 391-398.

García-Carreño F.L., Albuquerque-Cavalcanti C., Navarrete del Toro M.A. & Zaniboni-Filho E. (2002) Digestive proteinases of Brycon orbignyanus (Characidae, Teleostei): characteristics and effects of protein quality. Comparrative Biochemistry and Physiology 132B, 343-352.

García-Carreño F.L., Dimes L.E. & Haard N.F. (1993) Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Analitic Biochemistry 214, 65-69.

García-Carreño F.L. (1992) Protease inhibition in theory and practice. Biotechnology Education 3, 145-150

García-Carreño F.L., A.N. del Toro & M. Ezquerra. (1997) Digestive shrimp porteases for evaluation of protein digestibility in Vitro. I: Effect of protease inhibitors in protein ingredients. Journal of Marine Biotechnology 5, 36-40.

García-Ortega A., Verreth J. & Segner H. (2000) Post-prandial protease activity in the digestive tract of African catfish Clarias gariepinus larvae fed decapsulated cysts of Artemia. Fish Physiology and Biochemistry 22, 237-244.

García-Ortega A., Verreth J.A.J., Coutteau P., Segner H., Huisman E.A. & Sorgeloos P. (1998) Biochemical and enzymatic characterization of decapsulated cysts and nauplii of the brine shrimp Artemia at different developmental stages. Aquaculture 161, 501-514.

Gaudix A., E.M. Gaudix, M.P. Páez-Dueñas, P. González-Tello & F. Camacho. (2000) Procesos tecnológicos y métodos de control en la hidrólisis de proteínas. Ars Pharmaceutica 41(1), 79-89.

Gawlicka A., Leggiadro C.T., Gallant J.W. & Douglas S.E. (2001) Cellular expression of the pepsinogen and gastric proton pump genes in the stomach of winter flounder as determined by in situ hybridization. Journal of Fish Biology 58, 529-536.

Gawlicka A., Parent B., Horn M.H., Ross N., Opstad I. & Torrinsen O.J. (2000) Activity of digestive enzymes in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of readiness for first feeding. Aquaculture 184, 303-314.

Gawlicka A., Teh S.J., Hung S.S.O., Hinton D.E. & De La Noue J. (1995) Histological and histochemical changes in the digestive tract of white sturgeon larvae during ontogeny. Fish Physiology and Biochemistry 14, 357-371.

Gisbert E., Gimenez G., Fernandez I., Kotzamanis Y. & Estevez A. (2009) Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture 287(3), 381-387.

Gisbert E., Sarasquete M.C., Willot P. & Castelló-Orvay F. (1999) Histochemistry of the development of the digestive system of Siberian sturgeon during early ontogeny. Journal of Fish Biology 55, 596-616.

Grabner, M. (1985) An in vitro method for measuring protein digestibility of fish feed components. Aquaculture 48, 97-110.

Grabner M. & R. Hofer. (1985) The digestibility of the proteins of broad bean (Vicia faba) and soya bean (Glycine max) under in vitro conditions simulating the alimentary tracts of rainbow trout (Salmo gairdneri) and carp (Cyprinus carpio). Aquaculture 48, 111-122.

Gracia-López V., Kiewek-Martínez M. & Maldonado-García M. (2004) Effects of temperature and salinity on artificially reproduced eggs and larvae of the leopard grouper Mycteroperca rosacea. Aquaculture 237, 485-498.

Gracia-López V., Rosas-Vázquez C. & Brito-Pérez R. (2006) Effects of salinity on physiological conditions in juvenile common snook Centropomus undecimalis. Comparative Biochemistry and Physiology 145A(3), 340-345.

Green B.S. & McCormick M.I. (2001) Ontogeny of the digestive and feeding systems in the anemone fish Amphiprion melanopus. Environmental Biology of Fishes 61, 73-83.

Grier H. (2000) Ovarian germinal epithelium and folliculogenesis in the common snook, Centropomus undecimalis (Teleostei: centropomidae). Journal of Morphology 243(3), 265-81.

Grier H.J. & Taylor R.G. (1998) Testicular maturation and regression in the common snook. Journal of Fish Biology 53(3), 521-542.

Haard N.F. (1998) Speciality enzymes from marine organisms. Food Technology 53, 64-67.

Haard, N.F., L.E. Dimes, R.E. Arndt & F.M. Dong. (1996) Estimation of protein digestibility. IV. Digestive proteinases from the pyloric caeca of coho salmon (Oncorhynchus kisutch) fed diets containing soybean meal. Comparative Biochemistry and Physiology 115B (4), 533-540.

Hajjou M., Smine A., Guerard F. & Le Gal Y. (1995) Purification and some properties of a carboxypeptidase B from dogfish Scyliorhinus canicula. Comparative Biochemistry and Physiology 110B(4), 791-798

Hardy R.W. (1989) Practical feeding salmon and trout. pp. 185-203. In: T. Lovell (Ed.). Nutrition and Feeding in Fish. Van Nostrand Reinhold, A VI, NY.

Harpaz S. & Uni Z. (1999) Activity of intestinal mucosal brush border membrane enzymes in relation to the feeding habits of three aquaculture fish species. Comparative Biochemistry and Physiology 124A: 155-160.

Hernández S.A. (1987) Biología y pesquería de robalo blanco Centropomus undecimalis, (Bloch) en el río San Pedro, Tabasco. Tesis Profesional. ITMar. Boca del Río, Ver. México.

Heussen C. & E. B. Dowdle. (1980) Electrophoretic analysis of palminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytic Biochemistry 102, 196-202.

Hidalgo M.C., Urea E. & Sanz A. (1999) Comparative study of digestive enzymes in fish with different nutricional habits. Proteolytic and amylase activities. Aquaculture 170, 267-283.

Hjelmeland K. Huse, I., Jorgensen T., Molvik G. & Raa J. (1983) Trypsin and trypsinogen as indices of growth and survival potential of cod (Gadus morhua L.) larvae. Flodevigen Rapp 3, 1-17.

Hofer R. & F. Schiemer. (1981) Proteolytic activity in the digestive tract of several species of fish with different feeding habits. Oecologia (Berl) 48, 342-345.

Holt J.G., Faulk C.K. & Schwarz M.H. (2007) A review of the larviculture of cobia Rachycentron canadum, a warm water marine fish Aquaculture 268, 181-187.

Hsu H.W., D.L. Vavak, L.D. Satterlee & G.A. Miller. (1977) A multienzyme technique for estimating protein digestibility. Journal of Food Science 42, 1269-1273.

Ibarra-Castro L. & Duncan N.J. (2007) GnRHa-induced spawning of wild-caught spotted rose snapper Lutjanus guttatus. Aquaculture 272, 737-746.

Igbokwe E.C. & Downe A.E.R. (1978) Electrophoretic and histochemical comparison of three strains of Aedes aegypti. Comparative Biochemistry and Physiology 60B, 131–136.

Jensen M.S., Jensen S.K. & Jakobsen K. (1997) Development of digestive enzymes in pigs with emphasis on lipolytic activity in the stomach and pancreas. Journal of Animal Science 75, 437-445.

Jónás E., M. Rágyanszki, J. Oláh & L. Boross. (1983) Proteolytic digestive enzymes of carnivorous (Silurus glanis L.), herbivorous (Hipophthalmichthys molitrix Val.) and omnivorous (Cyprinus carpio L.) fishes. Aquaculture 30, 145-154.

Kageyama T., Tanabe K. & Koiwai O. (1990) Structure and development of rabbit pepsinogens. Stage-specific zymogens, nucleotide sequences of cDNAs, molecular evolution, and gene expression during development. Journal of Biological Chemistry 265, 17031-17038.

Knights M. (1985) Energetics and fish farming. p. 309-340. In: Fish Energetics, New Perspectives. P. Tytler y P. Calow (Eds.) Cromm Helm. London and Sydney.

Kolkovski S. (2001) Digestive enzymes in fish larvae and juveniles-implications and applications to formulated diets. Aquaculture 200, 181-201.

Komar C., Turnbull J.F., Roque A., Fajer E. & Duncan N.J. (2004) Effect of water treatment and aeration on the percentage hatch of demersal, adhesive eggs of the bullseye puffer (Sphoeroides annulatus). Aquaculture 229, 147-158

Köprücü K. & Y. Özdemir. (2005) Apparent digestibility of selected feed ingredients for Nile tilapia (Oreochromis niloticus). Aquaculture 250, 308-316.

Korostelev S.G., A.N. Nevalenny & O.E. Levchenko. (2005) Characterization of Digestive Enzymes in the Intestine of the Pacific Halibut Hippoglossus stenolepis Schmidt, 1904 and the Starry Flounder Platichthys stellatus (Pallas, 1788). Russian Journal of Marine Biology 31(3), 196-199.

Koshikawa N., Hasegawa S., Nagashima Y., Mitsuhashi K., Tsubota Y., Miyata S., Miyagi Y., Yasumitsu H. & Miyazaki K. (1998) Expression of Trypsin by Epithelial Cells of Various Tissues, Leukocytes, and Neurons in Human and Mouse. American Journal of Pathology 153, 937-944.

Koven W., Y. Barr, S. Lutzky, I. Ben-Atia, R. Weiss, M. Harel, P. Behrens & A. Tandler. (2001a) The effect of dietary arachidonic acid 20:4n-6 on growth, survival and resistance to handling stress in gilthead seabream Sparus aurata larvae. Aquaculture 193, 107-122.

Koven W., S. Kolkovski, E. Hadas, K. Gamsiz & A. Tandler. (2001b) Advances in the development of microdiets for gilthead seabream, Sparus aurata: a review. Aquaculture 194, 107–121.

Kumar S., R.M. Rathore & R. Chakrabarti. (2005) Digestive enzyme study of hybrid of silver carp (Hypophthalmichthys molitrix) x Bighead (Aristichthys nobilis) during ontogeny. Larvi`05 – Fish & Shellfish Larviculture Symposium, Belgium.

Kunitz M. (1947) Crystalline soybean trypsin inhibitor II. General properties. Journal of Genetic and Physiology 30, 291-310.

Kurokawa T. & Suzuki T. (1996) Formation of the diffuse pancreas and the development of digestive enzyme synthesis in larvae of the Japanese flounder Paralichthys olivaceus. Aquaculture 141, 267-276.

Kvåle A., Mangor-Jensen A., Moren M., Espe M. & Hamre K. (2007) Development and characterization of some intestinal enzymes in Atlantic cod (Gadus morhua L.) and Atlantic halibut (Hippoglossus hippoglossus L.) larvae. Aquaculture 264, 457-468.

Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.

Lau S.R. & Shafland P.L. (1982) Larval development of snook, Centropomus undecimalis (Pisces: Centropomidae). Copeia. 3, 618-627.

Lauff M. & R. Haufer. (1984) Protelytic enzymes in fish development and the importance of dietary enzymes. Aquaculture 37, 335-346.

Lazo J.P., Mendoza R., Holt G.J., Aguilera C. & Arnold C.R. (2007) Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture 265, 194-205.

Lambertsen G. (1985) Digestive lipolytic enzymes in cod (Gadus morhua): Fatty acid specificity. Comparative Biochemistry and Physiology 80B, 447–450.

Lehninger A.L. (1995) Bioquímica. OMEGA. Barcelona, España.

Lowerre-Barbieri K.S., F.E. Vose & J.A. Whittington. (2003) Catch-and-release fishing on a spawning aggregation of commom snook: Does it affect reproductive output?. Transactiones of the American Fisheries Society 132, 940-952.

Lundsted L.M., Melo, J F.B. & G. Moraes. (2004) Digestive enzymes and metabolic profile of suluriformes pintado (Pseudoplatystoma corruscans) in response to different diet composition. Comparative Biochemistry and Physiology 137A, 331-339.

Lundstedt L.M., J.F.B. Melo, C.S. Neto & G. Moraes. (2002) Diet influences proteolitic enzyme profile. p. 33-44. In: Fish Biology Congress, 2002, Vancouver. Fish Biology Congress 2002. Vancouver.

Ma H., C. Cahu, J. Zambonino, H. Yu, Q. Duan, M. G. Le & K. Mai. (2005) Activities of selected digestive enzymes during larval development of large yellow croaker (Pseudosciaena crocea). Aquaculture 245(1-4), 239-248.

MacDonald R.J., Swift G.H., Quinto C., Swain W., Pictet R.L., Thomas G. & Rutter W.J. (1980) Structure of a family of rat amylase genes. Nature 287,117-122.

Maraux S., Louvard D. & Baratti J. (1973) The aminopeptidase from hog-intestinal brush border. Biochimie et Biophysia Acta 321, 282-295

March B.E., C. Macmillan & F.W. Ming. (1985) Techniques for evaluation of dietary protein quality for the rainbow trout (Salmo gairdneri). Aquaculture 47, 275-292.

Marshall A.R. (1958) A survey of the snook fishery of Florida, with studies of the biology of the principal species, Centropomus undecimalis (Bloch). Florida State Bd. Conservation Technological Services 22, 5-37.

Mathews C.K. & K.E. Van Holde. (1998) Bioquímica, Mc Graw-Hill Interamericana. Madrid, España.

Matus de la P.A., A. Rosas, J.P. Lazo & M.T. Viana. 2007. Partial characterization of the digestive enzymes of Pacific bluefin tuna Thunnus orientalis under culture conditions. Fish Physiology and Biochemistry 33, 223–231.

Morais S., Rojas-García C.R., Conceição L.E.C., Rønnestad I. (2005) Digestion and absorption of a pure triacylglycerol and a free fatty acid by Clupea harengus L. larvae. Journal of Fish Biology 67, 223-238.

Moyano F.J., Barros A.M., Prieto A., Cañavate J.F. & Cardenas S. (2005) Evaluación de la ontogenia de enzimas digestivas en larvas de hurta, Pagrus auriga (Pisces: Sparidae). AquaNIC 22, 39-47.

Moyano F.J., Diaz M., Alarcon F.J. & Sarasquete M.C. (1996) Characterization of digestive enzyme activity during larval development of gilthead sea bream (Sparus aurata). Fish Physiology and Biochemistry 15, 121-130.

Moyano F.J., I.M. Díaz, M.D. López & F.J. Alarcón. (1999) Inhibition of digestive proteases by vegetable meals in three fish species; seabream (Sparus aurata), tilapia (Oreochromis niloticus) and African sole (Solea senegalensis). Comparative Biochemistry and Physiology 122B, 327–332.

Moyano F.J., F.J. Alarcón & M. Díaz. (1998) Comparative biochemistry of fish digestive proteases applied to the development of in vitro digestibility assays. Comparative Biochemistry and Physiology 5, 135-143.

Moyano F.J., M. Diaz, F.J. Alarcón & M.C. Sarasquete. (1996) Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiology and Biochemistry 15, 121-130.

Munilla-Morán R. & Saborido-Rey F. (1996) Digestive enzymes in marine species. I. Proteinase activities in gut from red fish (Sebastes mentella), seabream (Sparus aurata) and turbot (Scophthalmus maximus). Comparative Biochemistry and Physiology 113B, 395-402.

Munilla-Morán R. & Stark J.R. (1990) Metabolism in marine flatfish- VI. Effect of nutritional state on digestion in turbor, Scophthalmus maximus (L.). Comparative Biochemistry and Physiology 95B(3): 625-53.

Murray H.M., Gallant J.W., Perez-Casanova J.C., Johnson S.C. & Douglas S.E. (2003) Ontogeny of lipase expression in winter flounder. Journal of Fish Biology 62, 816-833

Nankervis L. & P.C. Southgate. (2006) An integrated assessment of gross marine protein sources used in formulated microbond diets for Barrramundi (Lates calcarifer). Aquaculture 257, 453-464.

Natalia Y., R. Hashim, A. Ali & A. Chong. (2004) Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae). Aquaculture 233, 305–320.

Neurath H. (1989) The diversity of proteolityc enzymes. pp. 1-13. In: Proteolityc Enzymes. Beynon, R y Bond, J.S. (Eds.). IRL Pres Oxford. UK.

NGS (1986) Aging of commom snook Centropomus undecimalis larvae using sagittal daily growth rings. Northeast Gulf Sciencie 8(2), 173-175.

Nishide T., Nakamura Y., Emi M., Yamamoto T., Ogawa M., Mori T. & Matsubara K. (1986) Primary structure of human salivary alpha-amylase gene. Gene 41, 299-304.

Oku H., Koizumi N., Okumura T., Kobayashi T. & Umino T. (2006) Molecular characterization of lipoproteine lipase, hepatic lipase and pancreatic lipase genes: Effects of fasting and refeeding on

their gene expression in red sea bream Pagrus major. Comparative Biochemistry and Physiolgy. 145B, 168-178.

Oña C., F.J. Alarcón, M. Díaz & E. Abellán. (2003) Estudio comparativo de la degradación in vitro de proteínas por las proteasas estomacales de Denton (Dentex dentex), Pargo (Pagrus Pagrus) y el hibrido Dentex x Pagrus. II Congreso Iberoamericano Virtual de Acuicultura (CIVA), 540-549.

Oña C., F.J. Alarcón, M. Díaz & E. Abellán. (2005a) Hidrólisis proteica in vitro de materias primas de diferente calidad por las proteasas intestinales de tres esparidos. X Congreso Nacional de Acuicultura, Almería España.

Oña C., F.J. Alarcón, M. Díaz & E. Abellán. (2005b) Efecto de los inhibidores presentes en harinas vegetales sobre las proteasas intestinales de dos espáridos y su híbrido. X Congreso Nacional de Acuicultura, Almería España.

Paech C., T. Christianson & K. Maurer. (1993) Zymogram of proteases made with developed film from nondenaturing polyacrylamide gels after electrophoresis. Analytic Biochemistry 208, 249-256.

Payne R.M., Sims H.F., Jennens M.L. & Lowe M.E. (1994) Rat pancreatic lipase and two related proteins: Enzimatic properties and mRNA expressions during development. American Journal of Physiology – Gastrointestinal and Liver Physiology 266, G914-G921.

Pedersen B.H. & Andersen K.P. (1992) Induction of trypsinogen in herring larvae (Clupea harengus). Marine Biology 112, 559-567.

Pedersen B. & B.O. Eggum. (1983) Prediction of protein digestibility by an in Vitro enzymatic pH-STAT procedure. Journal of Animal Physiology 49, 265-277.

Pedersen B.H., E.M. Nielsen & K. Hjelmeland. (1987) Variations in the content of trypsin and trypsinogen in larval herring (Clupea arengus) digesting copepod nauplii. Marine Biology 94, 171-181.

Perales-García N. (2010) Ontogenia enzimática de la mojarra tenguayaca Petenia splendida. Tesis de Maestría, Universidad Juárez Autónoma de Tabasco. 93 p.

Péres A., Cahu C.L. & Zambonino-Infante, J.L. (1997) Dietary spermine supplementation induces intestinal maturation in sea bass (Dicentrarchus labrax) larvae. Fish Physiology and Biochemistry 16, 479-485.

Péres A., Cahu C.L., Zambonino-Infante J.L., Legall M.M. & Quazuguel P. (1996) Amylase and trypsin responses to intake of dietary carbohydrate and protein depend on the developmental stage in sea bass (Dicentrarchus labrax) larvae. Fish Physiology and Biochemistry 15, 237-242.

Péres A., Zambonino-Infante J.L. & Cahu C.L. (1998) Dietary regulation of activities and RNAm levels of trypsin and amylase in sea bass (Dicentrarchus labrax) larvae. Fish Physiology and Biochemistry 19: 145-152.

Pérez J.J., G.A. Wicki, F.J. Moyano & F.J. Alarcón. (2003) Evaluación del efecto de inhibidores de proteasa presentes en ingredientes vegetales utilizables en piensos para dos especies piscícolas cultivadas en Argentina; Pacú (Piaractus mesopotamicus) y Pejerrey (Odontesthes bonaeriensis). II Congreso Iberoamericano Virtual de Acuicultura (CIVA). 442-453.

Peyronel D.V. & A.M. Cantera. (1995) A simple and rapid technique for postelectrophoretic detection of proteases using azocasein. Electrophoresis 16, 1894-1897.

Quiroga B.C., Solís C.F. & Estrada J. (1996) La pesquería de robalo en México. Pesquerías Relevantes de México. XXX Aniversario del INP. SEMARNAP/INP (II), 559-578.

Ramirez A.B. & Cerqueira V.R. (1994) Feeding behavior of young robalo (Centropomus undecimalis Bloch, 1792). I. The effect of chemical attractants. Aquaculture 124(1), 289-290.

Ribeiro L., Zambonino-Infante J.L., Cahu C. & Dinis M.T. (2002) Digestive enzymes profile of Solea senegalensis post larvae fed Artemia and a compound diet. Fish Physiology and Biochemistry 27, 61-69.

Ribeiro L., Zambonino-Infante J.L., Cahu.C. & Dinis M.T. (1999) Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 170, 465-473.

Riche M. & P.B. Brown. (1992) Availability of phosphorus from feedstuffs fed to rainbow trout, Oncorhynchus mykiss. Aquaculture 142, 269-282.

Ríos-Duran M.G. (2000) Actividad proteolítica en larvas de pez blanco Chirostoma estor copandaro (Pisces: Atherinidae): Implicaciones para su cultivo. Tesis de Maestría. UMSNH. 53 p.

Rivera S.M. (2003) Purification and characterization of trypsin from intestinal and pyloric caecal tissues of the silk snapper, Lutjanus vivanus (Cuvier 1828). Tesis de Mastría, 40 p.

Roberts D.E. Jr. (1987) Induced Maturation and Spawning of Common Snook, Centropomus undecimalis. Library of Congress Catalog Card number: 52-33786. Miami, Florida. 222-230. Proceedings of the thirty-eighth annual, Gulf and Caribbean Fisheries Institute.

Robyt J.F. & Whelan W.J. (1968) In: Starch and its Derivates. Radley JA (ed) Chapman and Hall, London.

Rodríguez M.A.R. (2004) Purification and kinetic characterization of trypsin from the intestine and pyloric caeca of the white grunt, Haemulon plumierii, (Lacepède, 1801). Tesis de Maestría, 29 p.

Rosenlaud G., J. Stoss & C. Talbot. (1997) Co-feeding marine fish larvae with inert and live diets. Aquaculture 155, 183-191.

Rungruangsak-Torrissen K., A. Rustad, J. Sunde, S.A. Eiane, H.B. Jensen, J. Opstvedt, E. Nygard, T.A. Samuelsen, H. Mundheim, U. Luzzana & G. Venturini. (2002) In vitro digestibility based on fish crude enzyme Extract for prediction of feed quality in growth trials. Journal of the Science of Food and Agriculture 82, 644-654.

Sáenz R.M., Alarcón F.J., Martínez M.I., Ruiz F., Díaz M. & Moyano F.J. (2005) Caracterización de las proteasas digestivas del lenguado senegalés Solea senegalensis Kaup, 1858. Boletín del Instituto Español de Oceanografía 21(1-4), 95-104.

SAGARPA 2004. La Pesquería de Robalo del Golfo de México. Anuales de la Secretaría de Pesca, México pp. 773-792.

Salvensen, G. & H. Nagase. (1989) Inhibition of proteolytic enzymes. pp. 83-104. In: Proteolytic enzymes. R. Beynon and J. S. Bond (Eds.). IRL Press Oxford. UK.

Sánchez-Zamora A., C.V. Rosas, V.L. Durruty & J.B. Suárez. (2002) Reproducción en cautiverio de robalo: Una necesidad inaplazable en el sureste Mexicano. Panorama Acuícola 7(5), 24-25.

Sánchez-Zamora A., T.G. García, L.M.D.D. Gómez & J.B. Suárez. (2003) Cultivo de robalo blanco Centropomus undecimalis: Aspectos reproductivos y crecimiento de juveniles. IV Reunión Nacional de Redes de Investigación en Acuacultura P. 293-300.

Satterlee L.D., H.F. Marshall & J.M. Tennyson. (1979) Measuring protein quality. J. A. O. C. S. 56, 103-109.

Saunders, R.M., M.A. Conner, A.N. Booth, E.M. Bickoff & G.O. Kohler. (1972) Measurment of digestibility of alfalfa concentrates by in vivo and in vitro methods. Journal of Nutrition 103, 530-535.

Savoie L. & S.F. Gauthier. (1986) Dialysis cell for the in vitro measurement of protein digestibility. Journal of Food Science 51, 494-498.

Seaman W.Jr., & M. Collins. (1983) Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (South Florida) -- snook. U.S. Fish Wildl. Serv. FWS/OBS-82/11.16. U.S. Army Corps of Engineers, TR EL-82-4. 16 p.

Shaozhen F., Wensheng L. & Haoran L. (2008) Characterization and expression of the pepsinogen C gene and determination of pepsin-like enzyme activity from orange-spotted grouper (Epinephelus coioides) Comparative Biochemistry and Phisiology 149B, 275-284.

Sheffner A.L., G.A. Eckfeldt & H. Spector. (1956) The pepsin-digestive residue (PDR) amino acid index of protein utilization. Journal of Nutrition 60, 105-120.

Sherwood N.M., Grier H.J., Warby C., Peute J. & Taylor R.G. (1993) Gonadotropin-releasing hormones, including a novel form, in snook Centropomus undecimalis, in comparison with forms in black sea bass Centropristis striata. Regulution Peptides 46(3), 523-34.

Shiau S. & H. Liang. (1995) Carbohydrate utilization and digestibility by tilapia, Oreochromis niloticus X O. aureus, are affected by chromic oxide inclusion in the diet. Journal of Nutrition 125, 976-982.

Sidell B.D. & Hazel J.R. (2002) Triacylglycerol lipase activities in tissues of Antarctic fishes. Polar Biology 25, 517-522.

Smith T.K., Tapia-Salazar M., Cruz-Suarez L.E. & Ricque-Marie D. (2000) Feed-borne biogenic amines: natural toxicants or growth promotors? pp. 24-32. In: Avances en Nutrición Acuícola V. Memorias

del V Simposium Internacional de Nutrición Acuícola. Cruz-Suárez LE, Ricque-Marie D, Tapia-Salazar M, Olvera-Novoa MA, Civera-Cerecedo R (eds) Nov 19-22. Mérida, Yucatán, México.

Sorgeloos P. (1980) The use of the brine shrimp Artemia in aquaculture. pp. 25–46. In: The brine shrimp Artemia. Ecology, culturing and use in aquaculture, Persoone, G., Sorgeloos, P., Ž. Roels, O., Jaspers, E. (Eds.). vol. 3. Universal Press, Wetteren.

Souza A.A.G., Amaral I.P.G., Albérico R.E.S., Carvalho L.B. & Bezerra R.S. (2007) Trypsin-like enzyme from intestine and pyloric caeca of spotted goatfish (Pseudupeneus maculatus). Food Chemistry 100, 1429-1434.

Srivastava A.S., Kurokawa T. & Suzuki T. (2002) mRNA expression of pancreatic enzyme precursors and estimation of protein digestibility in first feeding larvae of the Japanese flounder, Paralichthys olivaceus. Comparative Biochemistry and Physiology l32A, 629-635.

Stauffer C. (1989) Enzyme Assays for Food Scientists. Van Nostand Reinhold/AVI, New York. 552 p.

Steffens W. (1989) Principles of fish nutrition, Ellis Horwood, London. 384 p.

Stephen R. & Shafland P. (1982) Larval development of snook, Centropomus undecimalis (Pisces: Centropomidae). Copeia 3, 618-627.

Stoknes I. & Rustand T. (1995) Purification and characterization of multicatalytic proteinase from Atlantic Salmon (Salmo salar) muscle. Comparative Biochemistry and Physiology 111B(4), 587- 596.

Stroud R. (1975) A family of proteins-cutting proteins. Scientific American 231(1), 74-89.

Sunde J. (2006) Digestive protease activities, growth and feed utilisation in Atlantic salmon (Salmo salar L.). Degree Doctor Scientiarium (Dr. Scient). University of Bergen. Norway.

Tacon A.G.J. (1993) Feed ingredients for warmwater fish: fish meal and other processed feedstuffs. FAO Fisheries Circular 845: 64 p.

Tacon A.G.J. (1995) Application of nutrient requirement data under practical conditions: special problems of intensive and semi-intensive fish farming. Journal of Applying Ichthyology 11, 205-214.

Tanji M., Yakabe E., Kubota K., Kageyama T., Ichinose M., Miki K., Ito H. & Takahashi K. (2009) Structural and phylogenetic comparison of three pepsinogens from Pacific bluefin tuna: Molecular evolution of fish pepsinogens. Comparative Biochemistry and Physiology 152B, 9-19.

Tarcisio T., Vinicius R. & Brown J. (2005) Early weaning of fat snook (Centropomus parallelus Poey 1864) larvae. Aquaculture 253, 334-342.

Taylor R.G., J.A. Whittington & D.E. Haymans. (2001) Catch-and-release mortality rates of commom snook in Florida. North American Journal of Fisheries Management 21, 70-75.

Tengjaroenkul B., B.J. Smith, T. Caceci. & S.A. Smith. (2000) Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L., Aquaculture 182, 317–327.

Tramati C., B. Savona & A. Mazzola. (2005) A study of the pattern of digestive enzymes in Diplodus puntazzo (Cetti, 1777) (Osteichthyes, Sparidae): evidence for the definition of nutritional protocols. Aquacuture International 13, 89-95.

Tringali D.M. & T.M. Bert. (1996) The genetic stock structure of common snook (Centropomus undecimalis), Canadian Journal of Fishery and Aquatic Science 53, 974-984.

Tucker Jr., W.J. & S.W. Campbell. (1988) Spawning season of commom snook along the east central Florida coast. Quarterly Journal of the Florida Academy of Sciences, 51(1), 1-5.

Tucker Jr., W.J. (1998) Marine fish culture. Kluger Academic Publishers, Massachusetts, E.U.A. 750 p.

Tucker Jr., W.J (2003) Snook culture. World Aquaculture. Dec, 42-46.

Tucker Jr., W.J. (1987) Snook and tarpon culture and preliminary evaluation for commercial farming. Progresive Fish Culturist 49, 49-57.

Ueberschäer B. (1993) Measurement of proteolytic enzyme activity: Significance and application in larval fish research. pp. 233-239. In: Physiological and biochemical aspects of fish development, Walther B T, Fyhn H J (eds). part III, Univ. of Bergen, Norway.

Ugolev A.M., egorova V.V., Kuz’mina V.V. & Gruzdkov A.A. (1983) Comparative molecular characterization of membrane digestion on fish and mammals. Comparative Biochemistry and Physiology 76B, 627-635.

Uys W. & Hecht T. (1987) Assays on the digestive enzymes of sharptooth catfish, Clarias gariepinus (Pisces: Clariidae). Aquaculture 63, 301-313.

Uys W., T. Hecht & M. Walters. (1987) Changes in digestive enzyme activities of Clarias gariepinus (Pisces: Clariidae) after feeding. Aquaculture 63, 243-250.

van Tilbeurgh H., Sarda L., Verger R. & Cambillau C. (1992) Structure of the pancreatic lipase-procolipase complex. Nature 359, 159-162.

Vendrell J., Querol E. & Avilés F.X. (2000) Metallocarboxypeptidases and their protein inhibitors Structure, function and biomedical properties. Biochimia et Biophysia Acta 1477, 284-298.

Versaw W., Cuppett S.L., Winters D.D. & Williams L.E. (1989) An improved colorimetric assay for bacterial lipase in nonfat dry milk. Journal of Food Science 54, 232-254.

Versichelle D., Léger P., Lavens P. & Sorgeloos P. (1989) L'utilisation d'artémia. p. 241-259. In: Aquaculture. Technique et Documentation, Barnabé G (ed), Lavoisier, Paris.

Wainwright P.C., Huskey S.H., Turingan R.G. & Carroll A.M. (2006) Ontogeny of suction feeding capacity in snook, Centropomus undecimalis. Journal of Experimental Zoology 305(3), 246-52.

Wallace A.R., S.M. Boyle, H.J. Grier, K. Selma & T.R. Petrino. (1993) Preliminary observations on oocyte maturation and other aspects of reproductive biology in captive female snook, Centropomus undecimalis. Aquaculture 116, 257-273.

Walter H.E. (1984) Proteinases: methods with hemoglobin, casein and azocoll as substrates. pp 270-277. In: Methods of Enzymatic Analysis. Bergmeyern HJ (ed) Vol. V, Verlag Chemie Weinham.

Wang H., Y. Wang, Q. Wang, C. Xue & M. Sun. (2006) Purification and characterization of stomach protease from the turbot (Scophthalmus maximus L.). Fish Physiology and Biochemistry 32, 179–188.

Watanabe T., C. Kitajima & S. Fujita. (1983) Nutritional value of ive organism used in Japan for mass propagation fo fish: A review. Aquaculture 34, 115-143.

Weber K. & M. Osborn. (1969) The reliability of molecular weight determinations by dodecyl sulphate polyacrylamide gel electrophoresis. Journal of Biology and Chemistry 244, 4406-4412.

Wedermeyer K. (1989) Zur methode der kunstlinchen verdauung stickstoffhaltiger futterbestandeile. Landwirtschaftlichen Versuchsstationen 51, 375-385.

Whitaker J.R. (1994) Principles of enzymology for the food sciences. 2da Edición Marcel Dekker, INC, New York. 789 pp.

Williams D.E. & Reisfeld R.A. (1964) Disc electrophoresis in polyacrylamide gels: extension to new conditions of pH and buffers. Annals of New York Academic of Science 121, 373-381.

Yañes-Roca C., Rhody N., Nystrom M., Main K.L. (2009) Effects of fatty acid composition and spawning season patterns on egg quality and larval survival in common snook. Aquaculture 287(3), 335-340.

Yoshinaka R., Sato M., Tanaka H. & Ikeda S. (1985) Some enzymatic properties and digestive function of a pancreatic metalloproteinase in the catfish (Parasilurus asotus). Comparative Biochemistry and Physiology 80B(2), 223-226.

Zambonino-Infante J.L. & Cahu C. (1994) Development and response to a diet change of some digestive enzymes in sea bass (Dicentrarchus labrax) larvae. Fish Physiology and Biochemistry 12(5), 399-408.

Zambonino-Infante J.L. & Cahu C.L. (2001) Ontogeny of the gastrointestinal tract of marine fish larvae. Comparative Biochemistry and Physiology 130C, 477-487.

Zambonino-Infante J.L. & Cahu C.L. (2007) Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: applications to diet formulation. Aquaculture 268, 98-105.

Zarza-Meza E.A., J.M. V. Berruecos, C.P. Vásquez & P.T. Álvarez. (2006) Experimental culture of common snook Centropomus undecimalis (Bloch, 1972) and fat snook Centropomus parallelus (Poey, 1860) (Perciformes: Centropomidae) in freshwather in concrete pond in Alvarado, Veracruz, Mexico. Vet Mex 37(3), 327-333.

Zarza-Meza E.A., J.M.V. Berruecos, C.P. Vásquez & P.T. Álvarez. 2006. Cultivo experimental de robalo Centropomus undecimalis y chucumite Centropomus parallelus (Perciformes: Centropomidae) en estanques rusticos de tierra. Ciencias Marinas. 32, 145-153.

How to Cite

Alvarez-González, C. A., Gaxiola-Cortés, G., Jiménez-Martínez, L. D., Sanchez-Zamora, A., Arena-Ortiz, L., Martínez-Bruguete, T., … Jesús-Ramírez, F. (2010). Avances en la fisiología digestiva del robalo blanco (Centropomus undecimalis) en Tabasco, México. Avances En Nutrición Acuicola. Retrieved from https://nutricionacuicola.uanl.mx/index.php/acu/article/view/106

Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 8 

You may also start an advanced similarity search for this article.