Bioencapsulación de Levadura Probiótica para Larvas de Seriola rivoliana

Autores/as

  • Andressa Teles Universidad Juárez Autónoma de Tabasco y Centro de Investigaciones Biológicas del Noroeste, S.C.
  • Dariel Tovar Ramírez
  • Carlos Alfonso Alvarez-González
  • L. Guzmán-Villanueva Universidad Juárez Autónoma de Tabasco/ CONACyT
  • M. Burgoin Centro de Investigaciones Biológicas del Noroeste
  • M. Linares-Aranda Centro de Investigaciones Biológicas del Noroeste
  • Y.E. Lucero-Rivera Centro de Investigaciones Biológicas del Noroeste, S.C.

Palabras clave:

Debaryomyces hansenii, enriquecimiento, alimento vivo, peces marinos

Resumen

La actividad acuícola crece de manera exponencial, lo que implica la necesidad de alternativas a los métodos tradicionales de producción para disminuir el estrés animal y ambiental. Entre las alternativas utilizadas para el desarrollo sostenible de la actividad, está el uso de los probióticos que son capaces de modular la microbiota intestinal, estimular la respuesta inmune y la maduración del tracto digestivo de larva y juveniles de peces. Este trabajo tiene como objetivo presentar un panorama de los trabajos desarrollados con el uso de Debaryomyces hansenii sobre la fisiología digestiva de larvas y juveniles de peces marinos (Mycteroperca rosacea, Lutjanus guttatus), así como como la eficiencia del uso de alimento vivo como vector de D. hansenii para larvas de Seriola rivoliana. Los resultados obtenidos demuestran la eficacia en el uso de la levadura D. hansenii como probiótico para las larvas y juveniles de peces de interés comercial, con resultados en el incremento de la actividad de enzimas digestivas y modificación de la morfología intestinal. Los análisis de microscopia electrónica de barrido demostraron la capacidad de la levadura de pasar por el tracto digestivo de las larvas y juvenil y mantenerse viva, ya sea vía alimento inerte o vía alimento vivo a través de bioencapsulación, además, es posible observar los sitios de adhesión de la levadura en la mucosa intestinal. Con los resultados obtenidos se demuestra la posibilidad de administrar la levadura probiótica desde etapas tempranas de desarrollo lo que puede resultar en mejores índices zootécnicos y así establecer protocolos más eficientes de producción.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Andlid, T., Juárez, R.V., Gustafsson, L.,1995. Yeast colonizing the intestine of rainbow trout (Salmo gairdneri) and turbot (Scophtalmus maximus). Microb. Ecol. 30, 321-24

Angulo, C, Maldonado, M., Delgado, K., Reyes-Becerril, M. (2017) Debaryomyces hansenii up regulates superoxide dismutase gene expression and enhances the immune response and survival in Pacific red snapper (Lutjanus peru) leukocytes after Vibrio parahaemolyticus infection. Dev Comp Immunol 71, 18-27

Angulo, M., Reyes-Becerril, M., Medina-Córdova, N., Tovar-Ramírez, D., & Angulo, C. (2020). Probiotic and nutritional effects of Debaryomyces hansenii on animals. Applied Microbiology and Biotechnology 104(8), 7689–7699. https://doi.org/10.1007/s00253-020-10780-z

Balcázar, J. L., Blas, I. de, Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D., & Múzquiz, J. L. (2006). The role of probiotics in aquaculture. Veterinary Microbiology 114(3), 173–186. https://doi.org/10.1016/j.vetmic.2006.01.009

Borges, N., Keller-Costa, T., Sanches-Fernandes, G. M. M., Louvado, A., Gomes, N. C. M., & Costa, R. (2020). Annual Review of Animal Biosciences Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. https://doi.org/10.1146/annurev-animal-062920

Breuer, U., Harms, H., 2006. Debaryomyces hansenii: an extremophilic yeast with biotechnological potential. Yeast 23, 415–437.

Burgoin, M.C. 2015. Estudio de la Incorporación de la levadura viva Debaryomyces hansenii a través del rotífero Brachionus plicatilis durante los primeros días de desarrollo del jurel Seriola rivoliana. Tesis (Maestría en Ciencias). La Paz, México. Programa de Posgrado del Cibnor. 87 p.

Buzzini, P., Vaughan Martini, A. (2006) Yeast biodiversity and biotechnology. In: Rosa C, Péter G eds. The Yeast Handbook: biodiversity and ecophysiology of yeasts. Springer, Berlín, pp 533-559

Carnevali O, Maradonna F, Gioacchini G. (2017) Integrated control of fish metabolism, wellbeing and reproduction: The role of probiotic. Aquaculture 472:144-155. https://doi.org/10.1016/j.aquaculture.2016.03.037

Carnevali, O., de Vivo, L., Sulpizio, R., Gioacchini, G., Olivotto, I., Silvi, S., Cresci, A., 2006. Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture 258,430-438.

Ceseña, C. E., Vega-Villasante, F., Aguirre-Guzman, G., Luna-González, A., & Campa-Córdova, Á. I. (2021). Update on the use of yeast in shrimp aquaculture: A minireview. International Aquatic Research 13, 1–16. https://doi.org/10.22034/iar.2021.1904524.1066

Cross, M.L. (2002) Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. FEMS Immunol Med Microbiol 34, 245-253

Dehghan, M., Jafariyan, H., Rezai, H., Amoozagar, M. A., & Sahandi, J. (2011). Potential of Brine Shrimp (Artemia urmiana) Enrichment with Two Species of Bacillus and Yeast (Saccharomyces cerevisiae). World Journal of Fish and Marine Sciences, 3(6), 523–528.

Donzella, S., Capusoni, C., Pellegrino, L., & Compagno, C. (2021). Bioprocesses with Reduced Ecological Footprint by Marine Debaryomyces hansenii Strain for Potential Applications in Circular Economy. Journal of Fungi, 7(12), 1028. https://doi.org/10.3390/jof7121028

Donzella, S., Capusoni, C., Pellegrino, L., & Compagno, C. (2021). Bioprocesses with Reduced Ecological Footprint by Marine Debaryomyces hansenii Strain for Potential Applications in Circular Economy. Journal of Fungi, 7(12), 1028. https://doi.org/10.3390/jof7121028

Gatesoupe, F. J. (1999). The use of probiotics in aquaculture. Aquaculture 180, 147:165

Gatesoupe, F.J. 1994. Lactic acid bacteria increase the resistance of turbot larvae, Scophthalmus maximus, against pathogenic Vibrio. Aquat. Living Res., 7, 277–282.

Guzmán-Villanueva, L., D. Tovar-Ramírez, R. Civera-Cerecedo. 2007. Effect of wild and ornithine decarboxylase deficient Debaryomyces hansenii, on Paralabrax maculatofasciatus larvae development. Caribbean and Latin American Aquaculture; 6–9 Noviembre; San Juan Puerto Rico.

Hasan, K. N., & Banerjee, G. (2020). Recent studies on probiotics as beneficial mediator in aquaculture: a review. The Journal of Basic and Applied Zoology. https://doi.org/10.1186/s41936-020-00190-y

Huyben, D., Sun, L., Moccia, R., Kiessling, A., Dicksved, J., & Lundh, T. (2018). Dietary live yeast and increased water temperature influence the gut microbiota of rainbow trout. Journal of Applied Microbiology, 124(6), 1377–1392. https://doi.org/10.1111/jam.13738

Ishthiaq, I. B., Ahmed, J., & Ramalingam, K. (2021). Probiotics in brackish water fish farming: A special focus on encapsulated probiotics. Biointerface Research in Applied Chemistry 11(6), 14697–14708. https://doi.org/10.33263/BRIAC116.1469714708

Krogdahl, A., Sundby, A., 1999. Characteristics of pancreatic function in fish. In: Pierzynowski, S.G., Zabielski, R. Eds., Biology of the Pancreas in Growing Animals. Elsevier Science, Amsterdam, pp. 437-458

Loh, J. Y., Chan, H. K., Yam, H. C., In, L. L. A., & Lim, C. S. Y. (2020). An overview of the immunomodulatory effects exerted by probiotics and prebiotics in grouper fish. In Aquaculture International 28(2), 729–750. https://doi.org/10.1007/s10499-019-00491-2

Navarrete, P., & Tovar-Ramrez, D. (2014). Use of Yeasts as Probiotics in Fish Aquaculture. Sustainable Aquaculture Techniques. InTech. https://doi.org/10.5772/57196

Picchietti, S., Fausto, A.M., Randelli, E., Carnevali, O., Taddei, A.R., Buonocore, F., Scapigliati, G., Abelli, L. (2009). Early treatment with Lactobacillus delbrueckii strain induces an increase in intestinal T- cells and granulocytes and modulates immune-related genes of larval Dicentrarchus labrax (L.). Fish Shell Immunol 26, 368–376

Prista, C., Michán, C., Miranda, I. M., & Ramos, J. (2016). The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast, 33(10), 523–533. https://doi.org/10.1002/yea.3177

Reyes-Becerril, M., Angulo, C., Angulo, M., & Esteban, M. Á. (2021). Probiotic properties of Debaryomyces hansenii BCS004 and their immunostimulatory effect in supplemented diets for gilthead seabream (Sparus aurata). Aquaculture Research, 52(6), 2715–2726. https://doi.org/10.1111/are.15123

Reyes-Becerril, M., M.A. Ángeles Esteban, D. Tovar-Ramírez, F. Ascencio-Valle. 2011. Polyamine determination in different strains of the yeast Debaryomyces hansenii by high pressure liquid chromatography. Food Chem 127, 1862-5

Reyes-Becerril, M., Salinas, I., Cuesta, A., Meseguer, J., Tovar-Ramirez, D., Ascencio-Valle, F., & Esteban, M. Á. (2008). Oral delivery of live yeast Debaryomyces hansenii modulates the main innate immune parameters and the expression of immune-relevant genes in the gilthead seabream (Sparus aurata L.). Fish and Shellfish Immunology, 25(6), 731–739. https://doi.org/10.1016/j.fsi.2008.02.010

Roo, J., Fernández-Palacios, H., Hernández-Cruz, C.M., Mesa-Rodriguez, A., Schuchardt, D., Izquierdo, M., 2014. First results of spawning and larval rearing of longfin yellowtail Seriola rivoliana as a fast-growing candidate for European marine finfish aquaculture diversification. Aquac Res 45, 689–700

Rousseau, M. 2013. Enrichment of rotifers (Brachionus plicatilis), Artemia nauplii and artificial dry feed.with live yeast (Debaryomyces hansenii) for the growth of cultured dusky kob (Argyrosomus japonicus) larvae. Tesis de Maestria. Universidad de Ciudad del Cabo.

Samat, N. A., Yusoff, F. M., Rasdi, N. W., & Karim, M. (2020). Enhancement of live food nutritional status with essential nutrients for improving aquatic animal health: A review. Animals 10(12) 1–27. https://doi.org/10.3390/ani10122457

Schepper J.D. et al. (2017) Probiotics in Gut-Bone Signaling. In: McCabe L., Parameswaran N. (eds) Understanding the Gut-Bone Signaling Axis. Advances in Experimental Medicine and Biology, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-319-66653-2_11

Sen, S., & Mansell, T. J. (2020). Yeasts as probiotics: Mechanisms, outcomes, and future potential. In Fungal Genetics and Biology. https://doi.org/10.1016/j.fgb.2020.103333

Teles, A., Salas-Leiva, J., Alvarez-González, C. A., Gisbert, E., Ibarra-Castro, L., Pérez-Urbiola, J. C., Tovar-Ramírez, D., 2017. Histological study of the gastrointestinal tract in longfin yellowtail (Seriola rivoliana) larvae. Fish Physiol. Biochem. 43(6), 1613-1628. https://doi.org/10.1007/s10695-017-0397-5

Teles, A., Salas-Leiva, J., Alvarez-González, C. A., Tovar-Ramírez, D., 2019. Changes in digestive enzyme activities during early ontogeny of Seriola rivoliana. Fish Physiol. Biochem. 45(2), 733-742. https://doi.org/10.1007/s10695-018-0598-6

Touraki, M., Karamanlidou, G., Karavida, P., Chrysi, K. (2012) Evaluation of the probiotics Bacillus subtilis and Lactobacillus plantarum bioencapsulated in Artemia nauplii against vibriosis. World J Microbiol Biotechnol 28, 2425–2433. https://doi.org/10.1007/s11274-012-1052-z

Tovar-Ramírez, D., Mazurais, D., Gatesoupe, J.F., Quazuguel, P., Cahu, C.L., Zambonino-Infante, J. L. (2010). Dietary probiotic live yeast modulates antioxidant enzyme activities and gene expression of sea bass (Dicentrarchus labrax) larvae. Aquaculture 300, 142-147.

Tovar-Ramírez, D., Reyes-Becerril, M.C., Guzmán-Villanueva, L., Gleaves- López, V., Civera-Cerecedo, R., Ascencio-Valle, F., Gracia-López, V., Barbosa- Solomieu, V., Gisbert-Casas, E., Andree, K. B., Alvarez-González, C. A., Moyano-López, F.J., Ortíz-Galindo, J.L., Hinojosa-Baltazar, P., Gutiérrez-Rivera, J. N., Millán-Martínez, A. A. y Linares-Aranda, M. (2008) Probióticos en Acuacultura: Avances Recientes del Uso de Levaduras en Peces Marinos. 237- 257 pp. Editores: L. Elizabeth Cruz Suárez, Denis Ricque Marie, Mireya Tapia Salazar, Martha G. Nieto López, David A. Villarreal Cavazos, Juan Pablo Lazo y Ma. Teresa Viana. Avances en Nutrición Acuícola IX. IX Simposio Internacional de Nutrición Acuícola. Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.

Tovar-Ramírez, D., Zambonino Infante, J., Cahu, C., Gatesoupe, F. J., & Vázquez-Juárez, R. (2004). Influence of dietary live yeast on European sea bass (Dicentrarchus labrax) larval development. Aquaculture, 234(1–4), 415–427. https://doi.org/10.1016/j.aquaculture.2004.01.028

Tovar-Ramírez, D., Zambonino, J., Cahu, C., Gatesoupe, F.J., Vázquez- Juárez, R., Lésel R., 2002. Effect of live yeast incorporation in compound diet on digestive enzyme activity in sea bass (Dicentrarchus labrax) larvae. Aquaculture 204, 113–123.

Vargas, O., Gutiérrez, M. S., Caruffo, M., Valderrama, B., Medina, D. A., García, K., Reyes-Jara, A., Toro, M., Feijóo, C. G., & Navarrete, P. (2021). Probiotic Yeasts and Vibrio anguillarum Infection Modify the Microbiome of Zebrafish Larvae. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.647977

Vargas-Albores, F., Martínez-Córdova, L. R., Hernández-Mendoza, A., Cicala, F., Lago-Lestón, A., & Martínez-Porchas, M. (2021). Therapeutic modulation of fish gut microbiota, a feasible strategy for aquaculture? In Aquaculture. https://doi.org/10.1016/j.aquaculture.2021.737050

Vázquez-Silva, G., Castro-Mejía, J., Sánchez de la Concha, B., González-Vázquez, R., Mayorga-Reyes, L., Azaola-Espinosa, A. (2016) Bioencapsulation of Bifidobacterium animalis and Lactobacillus johnsonii in Artemia franciscana as feed for charal (Chirostoma jordani) larvae. Revista Mexicana de Ingeniería Química 15(3), 809-818.

Vázquez-Silva, G., Ramírez-Saad, H. C., Aguirre-Garrido, J. F., Mayorga-Reyes, L., Azaola-Espinosa, A., & Morales-Jiménez, J. (2017). Effect of bacterial probiotics bio-encapsulated into Artemia franciscana on weight and length of the shortfin silverside (Chirostoma humboldtianum), and pcr-dgge characterization of its intestinal bacterial community. Latin American Journal of Aquatic Research, 45(5), 1031–1043. https://doi.org/10.3856/vol45-issue5-fulltext-18

Vincent, A. T., Gauthier, J., Derome, N., & Charette, S. J. (2019). The Rise and Fall of Antibiotics in Aquaculture. Microbial Communities in Aquaculture Ecosystem. https://doi.org/10.1007/978-3-030-16190-3_1

Vine, N.G., Leukes, W.D., Kaiser, H. (2006). Probiotics in marine larviculture. FEMS Microbiology Reviews 30, 404-427

Wuertz, S., Schroeder, A., & Wanka, K. M. (2021). Probiotics in fish nutrition—long-standing household remedy or native nutraceuticals? Water. https://doi.org/10.3390/w13101348

Yukgehnaish, K., Kumar, P., Sivachandran, P., Marimuthu, K., Arshad, A., Paray, B.A., Arockiaraj, J. (2020) Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. Reviews in Aquaculture 12(3), 1903-1927.

Descargas

Publicado

2022-10-12

Cómo citar

Teles, A., Tovar Ramírez, D., Alvarez-González, C. A., Guzmán-Villanueva, L., Burgoin, M., Linares-Aranda, M., & Lucero-Rivera, Y. (2022). Bioencapsulación de Levadura Probiótica para Larvas de Seriola rivoliana. Avances En Nutrición Acuicola, 1(1), 432–454. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/388

Artículos más leídos del mismo autor/a