Change in Protein Digestion Capacity During Juvenile Fish Ontogeny: Approach on Spotted Rose Snapper (Lutjanus guttatus)

Autores/as

  • Emyr Peñaa Consejo Nacional de Ciencia y Tecnología CONACyT
  • Crisantema Hernández Laboratory of Nutrition, Food Research and Development Center A.C.
  • Carlos Alfonso Álvarez-González Universidad Juárez Autónoma de Tabasco
  • Leonardo Ibarra-Castro Laboratory of Nutrition, Food Research and Development Center
  • Patricia Domínguez-Jiménez Laboratory of Nutrition, Food Research and Development Center A.C.

Palabras clave:

Proteases, enzyme characterization, electrophoresis, in vitro digestibility, Lutjanidae.

Resumen

Aquaculture is facing a challenge in order to search new alternative nutritional sources to generate highly
digestible and profitable diets for aquaculture species. In addition, the understanding of changes in digestive
capacity in fish species with aquaculture potential is of relevance importance, as the capacity of assimilation
of different nutrients may change during the juvenile development of the species. Numerous research has
been focused on understanding the changes and adaptations of the development and capacities of the digestive
system during the early ontogeny of fish, minimizing the importance of possible changes during juvenile
ontogeny, as a trigger for the grow-out efficiency increase in fish culture.
Thus, few studies address the digestive changes during juvenile fish ontogeny and their implications in the
ability to assimilate different nutritional sources, considering that there should be no changes during this
stage, which in general represents the period of grow-out until commercial size, prior to their reproductive
stages.
The present work deals with the importance to characterize changes the digestive capacity during grow-out on
the spotted rose snapper (Lutjanus guttatus). Comparative studies of juvenile sizes of the species (20 to 400
grams) have shown existence of changes in the optimum alkaline protease activity, as well as a diversification
and increase in the number of digestive enzymes of the alkaline phase in relation to juvenile ontogeny,
resulting in

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adler-Nissen J (1986) Enzymatic hydrolysis of food proteins. Elsevier, London, pp 427

Álvarez-González CA, Moyano-López FJ, Civera-Cerecedo R, Carrasco-Chávez V, Ortíz-Galindo JL,

Nolasco-Soria H, Tovar-Ramírez D, Dumas S. (2008) Development of digestive enzyme activity in

larvae of spotted sand bass Paralabrax maculatofasciatus II: Electrophoretic analysis. Fish Physiol

Biochem 34:373–384.

Álvarez-Lajonchère L, Abdo de la Parra MI, Rodríguez-Ibarra LE, Velasco-Blanco G, Puello-Cruz AC,

González-Rodríguez B, Ibarra-Soto A, Ibarra-Castro L. (2012) The scale-up of spotted rose snapper,

Lutjanus guttatus, larval rearing at Mazatlán, Mexico. J World Aquac Soc 43(3):411-42

Allen GR. (1987) Synopsis of the circumtropical fish genus Lutjanus (Lutjanidae). In: Polovina JJ & S

Ralston (eds). Tropical Snappers and Groupers: Biology and Fisheries Management, pp. 33-87.

Westview Press, Boulder, Colorado.

AOAC (Association of Official Analytical Chemists). (2000) Official methods of analysis, 17th edition.

Association of Official Analytical Chemists, Arlington, Virginia, USA.

Bassompierre M, Ostenfeld TH, McLean E, Rungruangsak-Torrissen K. (1998) In vitro protein digestion and

growth of Atlantic salmon with different trypsin isozymes. Aquacult Int 6:47–56

Castillo-Yáñez FJ, Pacheco-Aguilar R, García-Carreño FL, Navarrete-Del Toro MA. (2004) Characterization

of acidic proteolytic enzymes from Monterey sardine (Sardinops sagax caerulea) viscera. Food

Chem 85:343-350

Castillo-Yáñez FJ, Pacheco-Aguilar R, García-Carreño FL, Navarrete-Del Toro MA. (2005) Isolation and

characterization of trypsin from Monterey sardine Sardinops sagax caerulea. Comp Biochem

Physiol B 140:91-98

Castillo-Yáñez FJ, Pacheco-Aguilar R, García-Carreño FL, Navarrete-Del Toro MA, López MF. (2006)

Purification and biochemical characterization of chymotrypsin from the viscera of Monterey sardine

(Sardinops sagax caerulea). Food Chem 99:252-259

Chiu ST, Pan BS (2002) Digestive protease activities of juvenile and adult eel (Anguilla japonica) fed with

floating feed. Aquaculture 205:141-156

Church FC, Swaisgood HE, Porter DH, Catignani G. (1983) Spectrophotometric assay using o-phthaldehyde

for determination of proteolysis in milk proteins. J Dairy Sci 66:1219-1227

Davis BJ (1964) Disc electrophoresis. II. Method and application to human serum proteins. Ann. New York

Acad. Sci. 121:404-427

Díaz-López M, Moyano FJ, Alarcón FJ, García-Carreño FL, Navarrete del Toro MA (1998) Characterization

of fish acid proteases by substrate-gel electrophoresis. Comp Biochem Physiol 121B:369–377

Dimes LE, Haard NF (1994) Estimation of protein digestibility- I. Development of an in vitro method for

estimating protein digestibility in salmonids. Comp Biochem Physiol A 108:349-362

Peña, E. et al., 2017. Change in protein digestion capacity during juvenile fish ontogeny: Approach on spotted rose snapper (Lutjanus guttatus). En: Cruz-Suárez, L.E., Ricque-Marie,

D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. (Eds), Investigación y Desarrollo en Nutrición

Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 408-431. ISBN 978-607-27-0822-8.

Dimes LE, Haard NF, Dong FM, Rasco BA, Forster IP, Fairgrieve WT, Arndt R, Hardy RW, Barrows FT,

Higgs DA. (1994) Estimation of protein digestibility — II. In vitro assay of protein in salmonid feeds.

Comp Biochem Physiol 108A:363–370

El-Mowafi AF, Dorrell H, Bureau DP (2000) Potential of a pH-stat method to estimate apparent digestibility

of protein in salmonids. IX International Symposium on Nutrition and Feeding of Fish, 21-25 May

, Miyazaki, Japan.

Erlanger BF, Kolowsky N, Cohen W (1961) The preparation and properties of two new chromogenic

substrates of trypsin. Arch Biochem Biophys 95:271–278

Ezquerra JM, Garcia-Carreño FL, Civera R, Haard NF (1997) pH-stat method to predict digestibility in vitro

in white shrimp Penaeus vannamei. Aquaculture 157:249-260

Falcón-Hidalgo B, Forrellat-Barrios A, Farnés QC, Hernández KU. (2011) Digestive enzymes of two

freshwater fishes (Limia vittata and Gambusia punctata) with different dietary preferences at three

developmental stages. Comp Biochem Physiol B 158:136–141

Furnè M, García-Gallego M, Hidalgo MC, Morales AE, Domezain A, Domezain J, Sanz A. (2008) Effect of

starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout

(Oncorhynchus mykiss). Comp Biochem Physiol A 149:420–425

Galaviz MA, García-Ortega A, Gisbert E, López LM, García-Gasca A. (2012) Expression and activity of

trypsin and pepsin during larval development of the spotted rose snapper Lutjanus guttatus. Comp

Biochem Physiol B 161:9-16

García-Carreño FL, Dimes LE, Haard NF. (1993) Substrate-gel electrophoresis for composition and

molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal Biochem 214:65-69

Guerrero-Zárate R, Álvarez-González CA, Olvera-Novoa MA, Perales-García N, Frías-Quintana CA,

Martínez-García R, Contreras-Sánchez WM. (2014) Partial characterization of digestive proteases in

tropical gar Atractosteus tropicus juveniles. Fish Physiol Biochem. DOI 10.1007/s10695-013-9902-7

Haard NF. (1994) Protein hydrolysis in seafoods In: Shahidi F., J.R. Botta (eds) Seafood chemistry.

Processing Techonology and Quality. Chapman and Hall, New York, pp10-33

Klomklao S, Benjakul S, Visessanguan W. (2004) Comparative studies on proteolytic activity of spleen

extracts from three tuna species commonly used in Thailand. J Food Biochem 28:355-372

Klomklao S, Kishimur H, Yabe M, Benjakul S. (2007) Purification and characterization of two pepsins from

the stomach of pectoral rattail (Coryphaenoides pectoralis). Comp Biochem Physiol B 147(4):682–

Klomklao S. (2008) Digestive proteinases from marine organisms and their applications. Songklanakarin J Sci

Technol 30 (1):37-46

Kolkovski S. (2001) Digestive enzymes in fish larvae and juveniles: implications and applications to

formulated diets. Aquaculture 200:181–201

Kuzʼmina VV. (1996) Influence of age on digestive enzyme activity in some freshwater teleosts. Aquaculture

:25-37

Peña, E. et al., 2017. Change in protein digestion capacity during juvenile fish ontogeny: Approach on spotted rose snapper (Lutjanus guttatus). En: Cruz-Suárez, L.E., Ricque-Marie,

D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. (Eds), Investigación y Desarrollo en Nutrición

Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 408-431. ISBN 978-607-27-0822-8.

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.

Nature 227:680–685

Lazo JP, Mendoza R, Holt GL, Aguilera C, Arnold CR. (2007) Characterization of digestive enzymes during

larval development of red drum (Sciaenops ocellatus). Aquaculture. 265:194–205

Lemos D, Tacon AGJ (2011) A rapid low-cost laboratory method for measuring the in vitro protein

digestibility of feed ingredients and feeds for shrimp. Aquacult Asia Pac 7:18-21

Lemos D, Lawrence AL, Siccardi III AJ. (2009) Prediction of apparent protein digestibility of ingredients and

diets by in vitro pH-stat degree of protein hydrolysis with species specific enzymes for juvenile Pacific

white shrimp Litopenaeus vannamei. Aquaculture 295:89-98

Lemos D, Ezquerra JM, García-Carreño FL. (2000) Protein digestion in penaeid shrimps: digestive

proteinases, proteinase inhibitors and feed digestibility. Aquaculture 186:89-105

Matus de la Parra A, Rosas A, Lazo JP, Viana MT. (2007) Partial characterization of the digestive enzymes of

Pacific bluefin tuna Thunnus orientalis under culture conditions. Fish Physiol Biochem 33:223-231

Moguel-Hernández I, Peña R, Nolasco-Soria H, Dumas S, Zavala-Leal I. (2013) Development of digestive

enzyme activity in spotted rose snapper, Lutjanus guttatus (Staeindacher, 1969) larvae. Fish Physiol

Biochem 40(3):839-848

Perera E, Moyano FJ, Rodriguez-Viera L, Cervantes A, Martínez-Rodríguez G, Mancera JM. (2010) In vitro

digestion of protein sources by crude enzyme extracts of the spiny lobster Panulirus argus (Latreille,

hepatopancreas with different trypsin isoenzyme patterns. Aquaculture 310:178-185

Perera E, Rodríguez‑Viera L, Perdomo‑Morales R, Montero‑Alejo V, Moyano FJ, Martínez‑Rodríguez R,

Mancera JM. (2015). Trypsin isozymes in the lobster Panulirus argus (Latreille, 1804): from

molecules to physiology. J Comp Physiol B 185:17-35.

Pérez-Jiménez A, Cardenete G, Morales AE, García-Alcázar A, Abellán E, Hidalgo MC. (2009) Digestive

enzymatic profile of Dentex dentex and response to different dietary formulations. Comp Biochem

Physiol A 154:157–164

Prudence M, Moal J, Boudry P, Daniel JY, Quéré C, Jeffroy F, Mingant C, Ropert M, Bédier E, Van

Wormhoudt A, Samain JF, Huvet A. (2006) An amylase gene polymorphism is associated with growth

differences in the Pacific cupped oyster Crassostrea gigas. Anim Genet 37:348–351.

Rønnestad I, Kamisaka Y, Conceicao LEC, Morais S, Tonheim SK. (2007) Digestive physiology of marine

fish larvae: hormonal control and processing capacity for proteins, peptides and amino acids.

Aquaculture 268:82–97

Rungruangsak-Torrissen K, Pringle GM, Moss R, Houlihan DF. (1998) Effects of varying rearing

temperatures on expression of different trypsin isoenzymes, feed conversion efficiency and growth in

Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 19:247–255

Rust MB. (2002) Nutritional Physiology. En: J. E. Halver y R. W. Hardy (eds.). Fish nutrition. Tercera

edición. Academic press. San Diego, CA, USA. 143-179

Peña, E. et al., 2017. Change in protein digestion capacity during juvenile fish ontogeny: Approach on spotted rose snapper (Lutjanus guttatus). En: Cruz-Suárez, L.E., Ricque-Marie,

D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. (Eds), Investigación y Desarrollo en Nutrición

Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 408-431. ISBN 978-607-27-0822-8.

Salze G, McLean E, Craig SR. (2012) Dietary taurine enhances growth and digestive enzyme activities in

larval cobia. Aquaculture 362–363:44–49

Sarath G, De la Motte RS, Wagner FW. (1989) Protease assay methods In: Beynon R, Bond J (eds)

Proteolytic enzymes: a practical approach. IRL, Oxford, pp25–56

Saunders RM, Conner MA, Booth AN, Bickoff EM, Kohler GO (1972) Measurement of digestibility of

alfalfa concentrates by in vivo and in vitro methods. J Nutr 103:530-535.

Silva-Carrillo Y, Hernández C, Hardy RW, González-Rodríguez B, Castillo-Vargasmachuca S. (2012) The

effect of substituting fish meal with soybean meal on growth, feed efficiency, body composition and

blood chemistry in juvenile spotted rose snapper Lutjanus guttatus (Steindachner, 1869).

Aquaculture 364–365:180–185

Simpson BK. (2000) Digestive proteinases from marine animals. In Seafood Enzymes: Utilization and

Influence on Postharvest Seafood Quality, N.F. Haard and B.K. Simpson, editors. Marcel Dekker,

New York., pp. 531-540.

Tibbetts SM, Milley JE, Ross NW, Verreth JAJ, Lall SP (2011a) In vitro pH-stat protein hydrolysis of feed

ingredients for Atlantic cod, Gadus morhua. 1. Development of the method. Aquaculture 319:398-406

Tibbetts SM, Verreth JAJ, Lall SP. (2011b) In vitro pH-stat protein hydrolysis of feed ingredients for Atlantic

cod, Gadus morhua. 2. In vitro protein digestibility of common and alternative feed ingredients.

Aquaculture 319:407-416

Torrissen KR. (1987) Genetic variation of trypsin-like isozymes correlated to fish size at Atlantic salmon

(Salmo salar). Aquaculture 62:1–10

Torrissen KR (1991) Genetic variation in growth rate of Atlantic salmon with different trypsin-like isozyme

patterns. Aquaculture 93:299–312

Unajak S, Meesawat P, Paemanee A, Areechon N, Engkagul A, Kovitvadhi U, Kovitvadhi S, Rungruangsak-

Torrissen K, Choowongkomon K. (2012) Characterization of thermostable trypsin and determination

of trypsin isozymes from intestine of Nile tilapia (Oreochromis niloticus L). Food Chem

(3):1533-1541

Vázquez RI, Rodríguez J, Abitia LA y Galván F. (2008) Food habits of the yellow snapper Lutjanus

argentiventris (Peters, 1869) (Percoidei: Lutjanidae) in La Paz Bay, Mexico. Rev Biol Mar Oceanogr

(2):295-302

Walter HE. (1984) Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyer

H.U. (eds) Methods of Enzymatic Analysis, Vol. V. Verlag Chemie, Weinheim, pp270–277

Weber K, Osborn M. (1969) The reliability of molecular weight determinations by dodecyl sulfate

polyacrylamide gel electrophoresis. J Biol Chem 244:4406-4412

Yasumaru F, Lemos D. (2014) Species specific in vitro protein digestion (pH-stat) for fish: method

development and application for juvenile rainbow trout (Oncorhynchus mykiss), cobia (Rachycentron

canadum), and Nile tilapia (Oreochromis niloticus). Aquaculture 426-427:74-84

Peña, E. et al., 2017. Change in protein digestion capacity during juvenile fish ontogeny: Approach on spotted rose snapper (Lutjanus guttatus). En: Cruz-Suárez, L.E., Ricque-Marie,

D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. (Eds), Investigación y Desarrollo en Nutrición

Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 408-431. ISBN 978-607-27-0822-8

Descargas

Publicado

2017-11-30

Cómo citar

Peñaa, E., Hernández, C., Álvarez-González, C. A., Ibarra-Castro, L., & Domínguez-Jiménez, P. (2017). Change in Protein Digestion Capacity During Juvenile Fish Ontogeny: Approach on Spotted Rose Snapper (Lutjanus guttatus). Avances En Nutrición Acuicola. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/23

Artículos más leídos del mismo autor/a