Avances en la Nutrición, Fisiología Digestiva y Metabolismo del Abulón

Autores/as

  • María Teresa Viana Castrillón Universidad Autónoma de Baja California

Resumen

Grandes avances en el ámbito de la nutrición del abulón se han llevado a cabo en los
últimos años, no solo para lograr un objetivo común que es la obtención de abulones con
tasas mayores de crecimiento, sino también por el gusto de investigar a este fascinante
molusco, que por ser un organismo filogenéticamente de los más primitivos, nos lleva de la
mano durante un gran número de facetas evolutivas para llegar a entender todos los
procesos que se llevan a cabo dentro de él. De tal forma que nos encontramos con un
molusco sumamente eficiente que es capaz de sobrevivir por largos periodos en inanición
utilizando el tejido proteico como fuente energética para cubrir sus requerimientos de
energía basal, mientras que los lípidos no son utilizados y utiliza bacterias para hacer más
eficiente su fisiología digestiva.
El alimento que consumen para que sea provechoso requiere de una máxima digestión para
que una mínima parte sea desechada y la mayor proporción quede para darle energía para
sobrevivir y crecer. De esta manera, el abulón posee un sistema de digestión eficiente para
degradar carbohidratos del tipo de diversas fibras como celulosa, agar, alginato,
carragenano y almidón, con la ayuda de bacterias digestivas, de las cuales posiblemente
incluso, las utilice como fuente de nutrientes. Además, presenta tasas de eficiencia de
alimentos de hasta el 130%, lo cual reitera su alta capacidad y eficiencia.
Sin embargo, nos encontramos con un organismo que crece lentamente debido a sus
hábitos lentos desde alimentación y movimiento. Es así que la nutrición y alimentación del
abulón se convierta en un reto que en conjunto con un esfuerzo en conjunto con el
desarrollo de líneas genéticas, ingeniería genética y sistemas de producción en conjunto
con la investigación de nutrición logremos al final producir un abulón de talla comercial en
menor tiempo del que actualmente es necesario.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Arroyo, E., Flores-Aguilar, R., Vázquez, E., 1996. Producción de diatomeas utilizadas como alimento de

postlarvas de abulón rojo (Haliotis rufescens). Resumenes Taller sobre Biología, Pesquería y Cultivo

de Abulón en México, 21-14 octubre, Ensenada, B.C., p. 1.

Britz, P. J., Hecht, T., Knauer, J., Dixon, M. G., 1994. The development of an artificial feed for abalone

farming. South Afr. J. Sci. 90: 7-8.

Britz, P. J., 1996a. Effect of dietary protein level on growth performance of South African abalone Haliotis

midae, fed fishmeal based semipurified diets. Aquaculture 140: 55-61.

Britz, P. J., 1996b. The suitability of selected protein sources for inclusion in formulated diets for the South

African abalone, Haliotis midae. Aquaculture 140:63-73.

Britz, P. J., Hetch, T., 1997. Effect of dietary protein and energy level on growth and body composition of

South African abalone, Haliotis midae. Aquaculture 156, 195-210.

Brown, M. R., Jeffrey, S. W., Volkman, J. K., Dunstan, G. A., 1997. Nutritional properties of microalgae for

mariculture. Aquaculture 151: 315-331.

Caers, M., Coutteau, P., Lombeida, P., Sorgeloos, P., 1998. The effect of lipid supplementation on growth and

fatty acid composition of Tapes philippinarum spat. Aquaculture 162:287-299.

Caers, M., Coutteau, P., Sorgeloos, P., 1999. Dietary impact of algal and artificial diets, fed at different

feeding rations, on the growth and fatty acid composition of Tapes philippinarum (L.) spat.

Aquaculture 170:307-322.

Chu, F.-L. E., Greaves, J., 1991. Metabolism of palmitic, linoleic, and linolenic acid in adult oysters,

Crassostrea virginica . Marine Biology 110:229-236.

Clark, A. G., Jowett, D. A., 1978. Hydrolytic enzymes of the paua Haliotis iris, a marine gastropod. NZJ

Mar. Freshwater Res., 12:221-222.

Coote, T. A., Hone, P.W., Van Barneveld, R. J., Maguire, G. B., 2000. Optimal protein level in a

semipurified diet for juvenile greenlip abalone Haliotis laevigata. Aquaculture Nutrition, 6(4):213-

D’Abramo, L. R., Castell, J. D., 1997. Research methodology. In: L.R. D’Abramo; D.E. Conklin and

D.M. Akiyama (Editors). Crustacean Nutrition. Advances in World Aquaculture. World Aquaculture

Society, Baton Rouge, Lousiana, USA pp 3-25.

Delaunay, F., Marty, Y., Moal, Y., Samain J.-F., 1993. The effect of monospecific algal diets on growth and

fatty acid composition of Pecten maximus (L.) larvae. J. Exp. Mar. Biol. Ecol. 173: 163-179.

Dunstan, G. A., Baillie, H. J., Barrett, S. M., Volkman, J. K., 1996. Effect of diet on the lipid composition of

wild and cultured abalone. Aquaculture 140: 115-127.

Erasmus, J. H., Cook, P. A., Coyne, V. E., 1997. The role of bacteria in the digestion of seaweed by the

abalone Haliotis midae. Aquaculture, 155:377-386.

Farias, A., García Esquivel, Z., Viana, M. T., Respiration curve and energetic cost for the blue abalone

Haliotis fulgens at different sizes. In preparation,

D’Abramo, L. R., 1991. Aquaculture Research Needs for the year 2000: Fish and Crustacean Nutrition.

World Aquaculture 22(2)57-62.

Fleming, A. E., Van Barneveld, R. J., Hone, P. W., 1996. The development of artificial dietas for abalone: A

review and future directions. Aquaculture 140: 5-63.

Floreto, E. A. T., Teshima, S.-I., Koshio, S., 1996. The effect of seaweed diets on the lipid and fatty acids of

the Japanese disc abalone Haliotis discus hannai. Fish. Science. 62(4): 582-588.

Gorfine, H. K., 1991. An artificial diet for hatchery-reared abalone Haliotis rubra. Internal Report No. 190,

Marine Science Laboratories, Queenscliff, Victoria, Australia, 34 pp.

Guzman, J. M., Viana, M. T., 1998. Growth of abalone Haliotis fulgens fed diets with and without fish meal,

compared to a commercial diet. Aquaculture, en prensa.

Hahn, K. O., 1989. Nutrition and growth of abalone. In: K.O. Hahn (Ed.), CRC Handbook of Culture of

Abalone and other Gastropods. CRC Press, Boca Raton, FL, pp. 135-156.

Holland, D. L., 1978. Lipid reserves and energy metabolism in the larvae of benthic marine invertebrates. En:

D.C., Malins and J.R. Sargent (Eds.), Biochemical and Biophysical Perspectives in Marine Biology,

vol. 4. Academic Press, London, pp. 85-123.

Jaeckle, W. B., Manahan, D. T., 1989a. Growth and energy imbalance during development of a lecitropic

molluscan larva (Haliotis rufescens). Biological Bulletin 177: 237-246.

Jaeckle, W. B., Manahan, D.T., 1989b. Feeding by a “nonfeeding” larvae: uptake of dissolved amino acids

from seawater by lecithophic larvae of the gastropod Haliotis rufescens. Marine Biology 103: 87-94.

Kawamura, T., Roberts, R. D., Takami, H., 1998. A review of the feeding and growth of postlarval abalone.

Journal of Shellfish Research. 17(3):615-625.

Knauer, J., Southgate, P. C., 1997. Growth and fatty acid composition of Pacific oyster (Crassostrea gigas)

spat fed a microalga and microcapsules containing varying amounts of eicosapentaenoic and

docosahexaenoic acid. J. Shellfish Res. 16(2):447-453.

Langdon, C. J., Waldock, M. J., 1981. The effect of algal and artificial diets on the growth and fatty acid

composition of Crassostrea gigas spat. J. Mar. Biol. Assoc. U.K. 61:431-448.

Leighton, D. L., 1968. A comparative study of food selection and nutrition in the abalone, Haliotis rufescens

Swainson, and the sea urchin Strongylocentrotus purpuratus (stimpson). Thesis for the degree of Ph

D., at the University of California, San Diego. Microfilmed 68-15, 685.

Livingston, D. R., de Zwaan, A., 1983. Carbohydrate Metabolism of Gastropods. In: P.W. Hochachka

(Editor),. The Mollusca, Metabolic Biochemistry and Molecular Biomechanics. Vol. 1, 5:177-242.

López, L. M., Viana, M. T., 1995. Determinación de la calidad del alimento elaborado con ensilaje de pescado

crudo y cocido, para abulones juveniles de Haliotis fulgens. Ciencias Marinas, 21(3):331-342.

Mai, K., Mercer, J. P., Donlon, J., 1994. Comparative studies on the nutrition of two species of abalone,

Haliotis tuberculata L. and Haliotis discus hannai Ino. II. Aminoacid composition of abalone and six

species of macroalgae with an assessment of their nutritional value. Aquaculture 128: 115-130.

Mai, K., Mercer, J. P., Donlon, J., 1995a. Comparative studies on the nutrition of two species of abalone,

Haliotis tuberculata L. and Haliotis discus hannai Ino. III. Response of abalone to various levels of

dietary lipid. Aquaculture 134: 65-80.

Mai, K., Mercer, J. P., Donlon, J., 1995b. Comparative studies on the nutrition of two species of abalone,

Haliotis tuberculata L. and Haliotis discus hannai Ino. IV. Optimum dietary protein level for growth.

Aquaculture 136: 165-180.

Manahan, D. T., 1989. Amino acid fluxes to and from seawater in axenic veliger larvae of a bivalve

(Crassostrea gigas). Marine Ecology Progress Series 53: 247-255.

Manahan, D. T., 1983. The uptake and metabolism of dissolved amino acids by bivalve larvae. Biological

Bulletin 164: 236-250.

Manahan, D. T., 1990. Adaptations by invertebrate larvae for nutrient acquisition from seawater. American

Zoologist 30: 147-160.

Manahan, D. T., Jaeckle, W. B., 1992. Implications of dissolved organic material in sea water for the

energetics of abalone larvae Haliotis rufescens: a review. In: Shepherd, S.A., Tegner, M.J. Guzmándel

Proo, S.A. (Eds.), Abalone of the World: Biology, Fisheries and Culture. Fishing News Books,

Oxford, pp 95-106.

McLean, N., 1970. Digestion in Haliotis rufescens Swainson (Gastropoda: Prosobranchia). J. Exp. Zool.,

: 303-318.

Mercer, J.P., Mai, K., Donlon, J., 1993. Comparative studies on the nutrition of two species of abalone,

Haliotis tuberculata Linnaeus and Haliotis discus hannai Ino. I. Effects of algal diets on growth and

biochemical composition. Inv. Reprod. Dev. 23: 75-88.

Merchen, N. R., Bourquin, L. D., 1994. Processes of digestion and factors influencing digestion of foragebased

diets by ruminants. In: G.C. Fahey Jr., (ed.) Forage Quality, Evaluation, and Utilization. Am.

Soc. Agron., Inc., Crop Sci. Soc. Am., Inc., Soil Sci. Soc. Am., Inc. Madison, Wisconsin.

Mody, K., Chauhan, V. D., 1993. Alginase from marine bacterium. Botanica Marina, 36(6): 477 - 480.

Monje, H., Viana, M.T., (en revisión) The effect of cellulose on the growth and cellulolytic activity of the

abalone Haliotis fulgens when used as an ingredient in artificial diets. Submitted to the J. of Shellfish

Research.

Nakada, I. H., Sweeny, P. C., 1967. Alginic Acid Degradation by Eliminases from Abalone Hepatopancreas.

The Journal of Biological Chemistry, 212 (5): 845 - 851.

Oshima, K., 1931. Digestive enzymes appeared in abalone viscera. J. Agric. Chem., 7,328 - 31.

Napolitano, G. E., Ackman, R. G., Ratnayake, W. M. N., 1990. Fatty acid composition of three cultured algal

species (Isochrysis galbana, Chaetoceros gracilis and Chaetoceros calcitrans) used as food for bivalve

larvae. J. World Aquac. Soc., 21: 122-130.

Ogino, C., Kato, N., 1964. Studies on the nutrition of abalone. II. Protein requirements for growth of

abalone, Haliotis discus. Bull.Jpn. Soc. Fish., 30:523-526.

Ogino, C., Kato, N., 1963. Studies on the nutrition of abalone. I. Feeding trials of abalone Haliotis discus

Reeve, with artificial diets. Bull. Jpn. Soc. Sci. Fish., 29:691-694.

Plante, C. J., Jumars, P. A., Baross, J. A., 1990. Digestive associations between marine detritivores and

bacteria. Annu Rev Ecol Syst., 21:93-127.

Rivero, L. E., Viana, M. T., 1996. Palatability effect of the pH, water stability and texture in artificial diets

used for juvenile abalone Haliotis fulgens (Phillips, 1845). Aquaculture, 144:353-362.

Rodríguez, C., Pérez, J. A., Izquierdo, M. S., Mora, J., Lorenzo, A., Fernández-Palacios, H., 1993. Essential

fatty acid requirements of larval gilthead sea bream, Sparus aurata (L.). Aquac. Fish. Manage. 24:295-

Rodríguez-Montesinos, Y. E., Hernández-Carmona, G., 1991. Variación estacional y geográfica de la

composición química de Macrocystis pyrifera en la costa occidental de Baja California. Ciencias

Marinas 17 (3), 91-107.

Sargent, J. R., 1976. The structure, metabolism and function of lipids in marine organisms. En: D.C., Malins

and J.R. Sargent (Eds.), Biochemical and Biophysical Perspectives in Marine Biology, vol. 3.

Academic Press, London, pp. 149-212.

Sargent, J. R., 1995. Origins and functions of egg lipids nutritional implications. En: N.R. Bromage and R.J.

Roberts (Eds.), Broodstock Management and Egg and Larval Quality, chapt. 14. Blackwell Science

Ltd., Oxford, pp. 353-372.

Sargent, J. R., Bell, J. G., Bell, M. V., Henderson, R. J., Tocher, D. R., 1993. The metabolism of

phospholipids and polyunsaturated fatty acids in fish. En: B. Lahlou and P. Vitiello (Eds.),

Aquaculture: Fundamental and Applied Research. Coastal and Estuarine Studies 43:103-124. American

Geophysical Union. Washington DC.

Shepherd, S.A., Steinberg, P. D., 1992. Food preferences of three Australian abalone species with a review of

the algal food of abalone. In: S.A. Shepherd, M.J. Tegner & S.A. Guzmán del Próo (Editors), Abalone

of the World. Biology, Fisheries and Culture. Fishing New Books, Oxford, pp. 169-181.

Shiau, S.-Y., 1998. Nutrient requirements of penaeid shrimps. Aquaculture 164:77-93.

Shilling, F. M., Hoegh-Guldberg, O., Manahan, D. T., 1996. Sources of energy for increased metabolic

demand during metamorphosis of the abalone Haliotis rufescens (Mollusca). Biol. Bull., 191: 402-412.

Shpigel, M., Ragg, N. L., Lupatsch, I., Neori, A., 1999. Protein content determines the nutritional value of

the seaweed Ulva lactuca L. for the abalone Haliotis tuberculata L. and H. discus hannai Ino. J. of

Shellfish Research, 18(1):227-233.

Shimma, Y., Taguchi, H., 1964. A comparative study on fatty acid composition of shellfish. Bull. Jpn. Soc.

Sci. Fish., 30:153-160.

Siqueiros-Beltrones, D. A., Voltolina, D., 2000. Grazing Selectivity of Red Abalone Haliotis rufescens

Postlarvae on Benthic Diatom Films under Culture Conditions. Journal of the World Aquaculture

Society. 31(2):239-246.

Tuncer, H., Harrell, R.M., Chai, T.-j., 1993. Benefical effects of n-3 HUFA enriched Artemia as food for

larvae palmeto bass (Morone saxatilis x M. chrysops). Aquaculture 110: 341-359.

Uki, N., 1981. Food value of marine algae of order Laminariales for growth of the abalone, Haliotis discus

hannai. Bull. Tohoku Reg. Fish. Res. Lab. 42:19-29.

Uki, N., Kemuyama, A., Watanabe, T., 1985. Development of semipurified test diet for abalone. Bull. Jpn.

Soc. Sci. Fish. 51: 1825-1833.

Uki, N., Sagiura, M., Watanabe, T., 1986. Requirement of essential fatty acids in abalone Haliotis discus

hannai. Bull. Jpn. Soc. Sci. Fish. 52: 1013-1023.

Uki, N., Watanabe, T., 1992. Review of the nutritional requirements of abalone (Haliotis spp.) and

development of more efficient diets. En: Shepherd, S.A., Tegner, M.J. Guzmán-del Proo, S.A. (Eds.),

Abalone of the World: Biology, Fisheries and Culture. Fishing News Books, Oxford, pp. 504-517.

Van Soest, P. J., 1994. Nutritional Ecology of the Ruminant. 2nd ed. Comstock Publishing Associates.

Cornell University Press, Ithaca, NY, USA.

Viana, M. T., Bernal-Castro, R.M., 1996. Chemical composition of abalone viscera from Haliotis fulgens, H.

corrugata and H. cracherodii during catching season. J. of Marine Biotechnology, 4:210-214.

Viana, M. T., López, L. M., Salas, A., 1993a. Diet development for juvenile abalone, Abalone fulgens,

evaluation of two artificial diets and macroalgae. Aquaculture, 117: 149-156.

Viana, M. T., Nava, C., 1993b. Ensilajes ácidos de pescado. Efecto de precalentamiento y de la adición de

los ácidos fosfórico y cítrico sobre su calidad bioquímica. Ciencias Marinas, 19(4):415-433.

Viana, M. T., Trujano, M., Solana-Sansores, R., 1994. Palatability and attraction activities in juveniles of

abalone Haliotis fulgens. Nine ingredients used in artificial diets. Aquaculture, 127:19-28.

Viana, M. T., Lopez, L. M., Garcia-Esquivel, Z., Mendez, E., 1996. The use of silage from fish and abalone

viscera as an ingredient for abalone feed. Aquaculture, 140:87-98.

Viana, M.T., Jarayapananda, P., Menasveta, P. (1996) Artificial diets for the tropical abalone. ARRI

Newsleter, 3(2):13-16.

Voogt, P. A., 1983. Lipids: Their distribution and metabolism. En: Hochachka, P.W. (Ed.), The Mollusca,

Vol. 1: Metabolic Biochemistry and Molecular Biomechanics. Academic Press, New York, pp. 329-

Watanabe, T., Takeguchi, M., 1989. Implications of marine oils and lipids in aquaculture. En: En: R.G.,

Ackman (Ed.), Marine Biogenic Lipids, Fats and Oils, vol. II. CRC Press, Boca Raton, Fl, pp. 457-479.

Wortington, C. C., 1999. Cellulase. Wortington-biochem.com/manual/C/CEL.html.

Wright, S. H., Ahearn, G. A., 1997. Nutrient absorption in invertebrates. In: W.H. Dantzler (ed.),

Comparative Physiology, Vol. II, Sect. 13. Oxford Univ. Press., pp.1137-1205.

Descargas

Cómo citar

Viana Castrillón, M. T. (2019). Avances en la Nutrición, Fisiología Digestiva y Metabolismo del Abulón. Avances En Nutrición Acuicola. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/243