La Biomasa Microbiana como Ingrediente en la Nutrición Acuícola
Palabras clave:
biomasa microbiana, nutrición acuícola, levaduras, microalgas, bacterias.Resumen
Los productos derivados de la pesca y la acuacultura tendrán un papel primordial en la satisfacción de las
necesidades alimentarias de la creciente población humana. La harina de pescado utilizada para la
manufactura de alimentos acuícolas representa un recurso limitado que experimenta alta demanda y una serie
de debates ambientales. Entre las diversas fuentes alternativas de nutrientes, la biomasa microbiana producida
a partir de organismos heterótrofos y autótrofos ha sido considerada como un sustituto prometedor para
reemplazar ingredientes derivados de animales y plantas. Diversos estudios han demostrado que algunas
especies de levaduras, bacterias y microalgas son candidatos viables para ser cultivados y que además
muestran excelentes características nutricionales. Aunque los costos de producción para generar biomasa
microbiana aún siguen siendo altos, nuevos métodos se han centrado en la utilización de substratos
alternativos para su producción. Las características nutricionales de los microorganismos y las tecnologías
emergentes para su producción, permiten pronosticar un mayor uso en la fabricación de alimentos. El presente
manuscrito revisa el estado actual del uso de microorganismos como ingredientes en la nutrición acuícola,
enfatizando aquellos que muestran un sólido potencial como aditivos funcionales y/o ingredientes para
remplazar la harina de pescado. Se presenta una síntesis de técnicas de evaluación nutricional aplicadas para
evaluar el desempeño de la biomasa microbiana, así como resultados recientes sobre los efectos de su
incorporación en dietas formuladas. La capacidad fisiológica que presentan diversas especies de organismos
acuáticos para utilizar este tipo de insumos alternativos es discutida.
Descargas
Citas
Aas TS, Grisdale-Helland B, Terjesen BF, Helland SJ (2006) Improved growth and nutrient utilisation in
Atlantic salmon (Salmo salar) fed diets containing a bacterial protein meal. Aquaculture 259: 365–
Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant
and strategies to reduce it. Biotechnology Advances 30: 1344-1353.
Adedayo MR, Ajiboye EA, Akintunde JK, Odaibo A (2011) Single cell proteins: as nutritional enhancer.
Advances in Applied Science Research 2: 396-409.
Arnold S, Smullen R, Briggs M, West M, Glencross B (2016) The combined effect of feed frequency and
ration size of diets with and without microbial biomass on the growth and feed conversion of
juvenile Penaeus monodon. Aquaculture Nutrition 22: 1340-1347.
Arora DK, Mukerji KG, Marth EH (1991) Handbook of Applied Mycology, vol. 3: Foods and Feeds Marcel
Dekker, Inc., New York. 636 pp.
Avnimelech Y (2009) Biofloc Technology - A Practical Guide Book. The World Aquaculture Society, Baton
Rouge, LA. 181 pp.
Basri NA, Shaleh SRM, Matanjun P, Noor NM, Shapawi R (2015) The potential of microalgae meal as an
ingredient in the diets of early juvenile Pacific white shrimp, Litopenaeus vannamei. Journal of
Applied Phycology 27: 857-863.
Becker EW (2007) Micro-algae as a source of protein. Biotechnology Advances 25 207–210.
Béné C, Barange M, Subasinghe R, Pinstrup-Andersen P, Merino G, Hemre G-I, Williams M (2015) Feeding
billion by 2050 - Putting fish back on the menu. Food Security 7: 261-274.
Berto RdS, Pereira GdV, Mouriño JLP, Martins ML, Fracalossi DM (2015) Yeast extract on growth, nutrient
utilization and haemato-immunological responses of Nile tilapia. Aquaculture Research. doi:
1111/are.12715
BFD 2015. Biofuels Digest. Calysta: Biofuels Digest’s 2015 5-Minute Guide update. J. Lane.
http://www.biofuelsdigest.com/bdigest/2015/05/13/calysta-biofuels-digests-2015-5-minute-guideupdate/
Bi Z, He BB (2013) Characterization of microalgae for the purpose of biofuel production. Trans ASABE
:1529–1539.
Biswas G, Korenaga, H, Nagamine R, Kono T, Shimokawa H, Itami T, Sakai M (2012) Immune stimulant
effects of a nucleotide- rich baker’s yeast extract in the kuruma shrimp, Marsupenaeus japonicus.
Aquaculture 366–367: 40–45.
Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for
mariculture. Aquaculture 151: 315-331.
Brunson JF, Romaire RP, Reigh RC (1997) Apparent digestibility of selected ingredients in diets for white
shrimp Penaeus setiferus L. Aquaculture Nutrition 3: 9–16.
Carton-Kawagoshi RJ, Caipang CM (2015) Algal-derived products and their role in shrimp immunity. In:
Caipang, C.M., Bacano-Maningas, M.B.I. Fagutao, F.F. (eds.) Biotechnological advances in shrimp
health management in the Philippines, pp. 73-88. Research Signpost, Kerala, India.
Chen W, Wang W, Yu W (2012) The technique of gonad promotion of Apostichopus japonicus indoors in
winter. Fisheries Science 11: 43-44 (in Chinese)
Cherubini F (2010) The Biorefinery concept: Using biomass instead of oil for producing energy and
chemicals. Energy Conversion and Management 51: 1412–1421.
Conceição LEC, Morais S, Rønnestad I (2007) Tracers in fish larvae nutrition: A review of methods and
applications. Aquaculture 267: 62–75.
Condrey R, Gosselink J, Bennett H (1972) Comparison of the assimilation of different diets by Penaeus
setiferus and P. aztecus. Fisheries Bulletin 70: 1281–1292.
Cruz-Suárez LE, Tapia-Salazar M, Villarreal-Cavazos D, Beltran-Rocha JC, Nieto-López MG, Lemme A,
Ricque-Marie D (2009) Apparent dry matter, energy, protein and amino acid digestibility of four
soybean ingredients in white shrimp Litopenaeus vannamei juveniles. Aquaculture 292: 87-94.
Daniels CL, Merrifield DL, Boothroyd DP, Davies SJ, Factor JR, Arnold KE (2010) Effect of dietary Bacillus
spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae
growth performance, gut morphology and gut microbiota. Aquaculture 304: 49–57.
Dantas EM, Valle BCS, Brito CMS, Calazans NKF, Peixoto SRM, Soares RB (2016) Partial replacement of
fishmeal with biofloc meal in the diet of postlarvae of the Pacific white shrimp Litopenaeus
vannamei. Aquaculture Nutrition 22: 335-342.
De Francesco M, Parisi G, Pérez-Sánchez J, Gómez-Réqueni P, Médale F, Kaushik SJ,
Mecatti M, Poli BM (2007) Effect of high-level fish meal replacement by plant proteins in gilthead sea bream
(Sparus aurata) on growth and body/fillet quality traits. Aquaculture Nutrition 13: 361–372.
De Schryver P, Crab R, Defoirdt T, Boon N, VerstraeteW (2008) The basics of bio-flocs technology: the
added value for aquaculture. Aquaculture 277: 125–137.
Devresse B (2000) Nucleotides–a key nutrient for shrimp immune system. Feed Mix 8: 20–22.
Dewapriya P, Kim S (2014) Marine microorganisms: an emerging avenue in modern nutraceuticals and
functional foods. Food Research International 56: 115-125.
Doelle HW (1994) Microbial Process Development. World Scientific Publishing Co. Pte. Ltd. NJ, USA. 308
pp.
Do Huu H, Tabrett S, Hoffmann K, Koppel P, Lucas JS, Barnes AC (2012) Dietary nucleotides are
semiessential nutrients for optimal growth of black tiger shrimp (Penaeus monodon). Aquaculture
–367, 115–121.
Duong VT, Ahmed F, Thomas-Hall SR, Nowak K, Schenk PM (2015) High protein- and high lipid-producing
microalgae from outback Australia as potential feedstock for animal feed and biodiesel. Frontiers in
Bioengineering and Biotechnology 3: 53.
Emerenciano M, Ballester ELC, Cavalli RO, Wasielesky W (2012) Biofloc technology application as a food
source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis
(Latreille, 1817). Aquaculture Research 43: 447–457.
EPA (1995) Food and Agricultural Industries in AP 42, Fifth Edition, Volume I.
FAO/WHO (1973) Energy and protein requirement. Report of a Joint FAO/WHO ad hoc Expert Committee,
vol. 52. FAO Geneva.
Fábregas J, Herrero C (1985) Marine microalgae as a potential source of single cell protein (SCP). Applied
Microbiology and Biotechnology 23: 110–113.
Ferreira IMPLVO, Pinho O, Vieira E, Tavarela JG (2010) Brewer’s Saccharomyces yeast biomass:
characteristics and potential applications. Trends in Food Science and Technology 21: 77–84.
Francis G, Makkar HPS, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed
ingredients and their effects in fish. Aquaculture 199: 197-227.
Gamboa-Delgado J, Márquez-Reyes JM (2017) Potential of microbial-derived nutrients for aquaculture
development. Reviews in Aquaculture. In press. doi: 10.1111/raq.12157
Gamboa-Delgado J, Fernández-Díaz B., Nieto-López MG, Cruz-Suárez LE (2016) Nutritional contribution of
torula yeast and fish meal to the growth of shrimp Litopenaeus vannamei as indicated by natural
nitrogen stable isotopes. Aquaculture 453: 116-121.
Gamboa-Delgado J, Rodríguez Montes de Oca GA, Román-Reyes JC, Villarreal-Cavazos, D, Nieto-López M,
Cruz-Suárez LE (2017) Assessment of the relative contribution of dietary nitrogen from fish meal
and biofloc meal to the growth of shrimp (Litopenaeus vannamei). Aquaculture Research 48: 2963-
Gamboa-Delgado J, Rojas-Casas MG, Nieto-López MG, Cruz-Suárez LE (2013) Simultaneous estimation of
the nutritional contribution of fish meal, soy protein isolate and corn gluten to the growth of Pacific
white shrimp (Litopenaeus vannamei) using dual stable isotope analysis. Aquaculture 380-383: 33-
García-Ortega A, Trushenski TJ, Kissinger K (2016) Evaluation of fish meal and fish oil replacement by
soybean protein and algal meal from Schizochytrium limacinum in diets for giant grouper
Epinephelus lanceolatus. Aquaculture 452: 1-8.
Ginsberg C, Brown S, Walker S (2008) Bacterial Cell Wall Components. In: Fraser-Reid BO, Tatsuta K,
Thiem J (eds.) Glycoscience, pp 1535-1600. Springer-Verlag Berlin Heidelberg.
Glencross B, Irvin S, Arnold S, Blyth D, Bourne N, Preston N (2014) Effective use of microbial biomass
products to facilitate the complete replacement of fishery resources in diets for the black tiger
shrimp. Penaeus monodon. Aquaculture 431: 12–19.
Gómez-Pastor R, Pérez-Torrado R, Garre E, Matallana E (2011) Recent advances in yeast biomass
production. In: Matovic D (ed.) Biomass - Detection, production and usage, pp. 201-222. InTech,
Rijeka, Croatia.
Goodall JD, Wade NM, Merritt DJ, Sellars MJ, Salee K, Coman GJ (2016) The effects of adding microbial
biomass to grow-out and maturation feeds on the reproductive performance of black tiger shrimp,
Penaeus monodon. Aquaculture 450: 206-212.
Grasso FW, Basil JA (2002) How lobsters, crayfishes, and crabs locate sources of odor: current perspectives
and future directions. Current Opinion in Neurobiology 12: 721–727.
Hara TJ (1993) Chemoreception. In: Evans DH (ed.) The Physiology of Fish. pp. 191–218, CRC Press, Boca
Raton, FL.
Hara TJ (2005) Olfactory responses to amino acids in rainbow trout: revisited. In: Reutter K, Kapoor BG
(eds) Fish Chemosenses, pp. 31–64. Science Publishers, Inc. Enfield, NH.
Hertrampf JW, Piedad-Pascual F (2000) Handbook on Ingredients for Aquaculture Feeds, Kluwer Academic
Publishers, Dordrecht, The Netherlands. 573 pp.
Huang YT, Su CP (2014) High lipid content and productivity of microalgae cultivating under elevated carbon
dioxide. Int. J. Environ. Sci. Technol. 11: 703–710.
IM, Index Mundi (2016) Index Mundi data portal. http://www.indexmundi.com Accessed January 2016.
Ju ZY, Deng D-F, Dominy W (2012) A defatted microalgae (Haematococcus pluvialis) meal as a protein
ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei,
Boone, 1931). Aquaculture 354–355: 50–55.
Kaushik, SJ, Covès D, Dutto G, Blanc D (2004) Almost total replacement of fish meal by plant protein
sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture 230:
–404.
Kim J-K, Lee BK (2000) Mass production of Rhodopseudomonas palustris as diet for aquaculture.
Aquacultural Engineering 23: 281–293.
Kiron V, Phromkunthong W, Huntley M, Archibald I, De Scheemaker G (2012) Marine microalgae from
biorefinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp.
Aquaculture Nutrition 18: 521–531.
Koch JFA, Pezzato LE, Barros MM, Teixeira CP, Junior ACF, A Padovani CR (2011) Levedura como
pronutriente em dietas para matrizes e alevinos de tilápia-do-nilo. Revista Brasileira de Zootecnia
: 2281-2289.
Kinsella JE, German B, Shetty J (1985) Uricase from fish liver: isolation and some properties. Comparative
Biochemistry and Physiology 82B: 621– 624.
Kissinger KR, García-Ortega A, Trushenski JT (2016) Partial fish meal replacement by soy protein
concentrate, squid and algal meals in low fish-oil diets containing Schizochytrium limacinum for
longfin yellowtail Seriola rivoliana. Aquaculture 452: 37-44.
Kobayashi M, Kurata SI (1978) The mass culture and cell utilization of photosynthetic bacteria. Process
Biochemistry 13: 27-30.
Kumar V, Sinha AK, Makkar HP, De Boeck G, Becker K (2012) Phytate and phytase in fish nutrition.
Journal of Animal Physiology and Animal Nutrition 96: 335–64.
Le Vay L, Gamboa-Delgado J (2011) Naturally-occurring stable isotopes as direct measures of larval feeding
efficiency, nutrient incorporation and turnover. Aquaculture 315: 95-103.
Lee B-K, Kim JK (2001) Production of Candida utilis on molasses in different culture types. Aquacultural
Engineering 25:111–124.
Li Y, Xiao G, Mangott A, Kent M, Pirozzi I (2016) Nutrient efficacy of microalgae as aquafeed additives for
the adult black tiger prawn, Penaeus monodon. Aquaculture Research 47: 3625-3635.
Li P, Gatlin III DM (2006) Nucleotide nutrition in fish: Current knowledge and future applications.
Aquaculture 251: 141–152.
Li P, Gatlin III DM (2003) Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feed supplement for
hybrid striped bass (Morone chrysops x M. saxatilis). Aquaculture 219: 681– 692.
Li P, Lawrence AL, Castille FL, Gatlin DM (2007) Preliminary evaluation of a purified nucleotide mixture as
a dietary supplement for Pacific white shrimp Litopenaeus vannamei (Boone). Aquaculture Research
: 887–890.
Liu W, Pearce CM, McKinley RS, Forster IP (2016) Nutritional value of selected species of microalgae for
larvae and early post-set juveniles of the Pacific geoduck clam, Panopea generosa. Aquaculture 452:
-341.
Loo PL, Vikineswary S, Chong VC (2013) Nutritional value and production of three species of purple nonsulphur
bacteria grown in palm oil mill effluent and their application in rotifer culture. Aquaculture
Nutrition 19: 895–907.
Loosli JK, McDonald IW (1968) Nonprotein nitrogen in the nutrition of ruminants. FAO Agricultural Studies
No. 75. 94 pp.
Lunger AN, Craig S, McLean E (2006) Replacement of fish meal in cobia (Rachycentron canadum) diets
using an organically certified protein. Aquaculture 257: 393–399.
Macias-Sancho J, Poersch LH, Bauer W, Romano LA, Wasielesky W, Tesser MB (2014) Fishmeal
substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei:
effects on growth and immunological parameters. Aquaculture 426–427: 120–125.
Mahasneh IA (1997) Production of single cell protein from five starins of the microalga Chlorella sp.
(Chlorophyta). Cytobiosciences 90: 153-161.
Martínez-Rocha L, Gamboa-Delgado J, Nieto-Lopez MG, Ricque-Marie D, Cruz-Suarez LE (2012)
Incorporation of dietary nitrogen from fish meal and pea meal (Pisum sativum) in muscle tissue of
Pacific white shrimp (Litopenaeus vannamei) fed low protein compound diets. Aquaculture Research
: 847-859.
McClanahan T, Allison EH, Cinner JE (2015) Managing fisheries for human and food security. Fish and
Fisheries 16: 78–103.
Miller BM, Litsky W (1976) Single Cell Protein in Industrial Microbiology. McGraw-Hill Book Co., New
York. 406 pp.
Muzinic LA, Thompson KR, Morris A, Webster CD, Rouse DB, Manomaitis L (2004) Partial and total
replacement of fish meal with soybean meal and brewers’ grains with yeast in practical diets for
Australian red claw crayfish Cherax quadricarinatus. Aquaculture 230: 359–376.
Nasseri AT, Rasoul-Amini S, Morowvat MH, Ghasemi Y (2011) Single cell protein: production and process.
American Journal of Food Technology 6: 103–116.
Newaj-Fyzul A, Austin B (2015) Probiotics, immunostimulants, plant products and oral vaccines, and their
role as feed supplements in the control of bacterial fish diseases. Journal of Fish Diseases 38: 937–
Nguyen TH, Fleet GH, Rogers PL (1998) Composition of the cell walls of several yeast species. Applied
Microbiology and Biotechnology 50: 206–212.
Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production – A close look at the
economics. Biotechnology Advances 29: 24–27.
Nouska C, Mantzourani I, Alexopoulos A, Bezirtzoglou E, Bekatorou A, Akrida-Demertzi K, Demertzis P,
Plessas S (2015) Saccharomyces cerevisiae and kefir production using waste pomegranate juice,
molasses, and whey. Czech Journal of Food Sciences 33: 77-282.
National Research Council (NRC) (2011) Nutrient Requirements of Fish. The National Academies Press, 360
p. Washington, DC, USA.
Olafsen JA (2001) Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture 200: 223-
Olaizola M (2003) Commercial development of microalgal bio- technology: From the test tube to the
marketplace. Biomolecular Engineering 20: 459–466.
Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter
outdoor photobioreactors. Journal of Applied Phycology 12:499–506.
Oliva-Teles A (2012) Nutrition and health of aquaculture fish. Journal of Fish Diseases 35: 83-108.
Oliva-Teles A, Goncalves P (2001) Partial replacement of fishmeal by brewer’s yeast (Saccaromyces
cerevisae) in diets for sea bass (Dicentrarchus labrax) juveniles. Aquaculture 202: 269–278.
Oliveira AM, Oliva Neto P (2011). Improvement in RNA extraction from S. cerevisie by optimization in the
autolysis and NH3 hydrolysis. Brazilian Archives of Biology and Technology 54: 1007-1018.
Olsen RL, Hasan MR (2012) A limited supply of fishmeal: impact on future increases in global aquaculture
production. Trends in Food Science & Technology 27: 120–128.
Olvera-Novoa MA, Martinez-Palacios CA, Olivera-Castillo L (2002) Utilization of torula yeast (Candida
utilis) as a protein source in diets for tilapia (Oreochromis mossambicus Peters) fry. Aquaculture
Nutrition 8: 257-264.
Øverland M, Tauson A-H, Shearer K, Skrede A (2010) Evaluation of methane- utilising bacteria products as
feed ingredients for monogastric animals. Archives of Animal Nutrition 64:171–89.
Pacheco-Vega JM, Gamboa-Delgado J, Alvarado-Ibarra AG, Nieto-López MG, Tapia-Salazar M, Cruz-
Suárez LE (2017) Nutritional contribution of fish meal and microbial biomass produced from two
endemic microalgae to the growth of shrimp Litopenaeus vannamei as indicated by natural stable
isotopes. Latin American Journal of Aquatic Research. Accepted.
Panigrahi A, Kiron V, Puangkaew J, Kobayashi T, Satoh S (2005) The viability of probiotic bacteria as a
factor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture 243:
-254.
Pelczar MJ, Chan ECS (2010) Microbiology - An Application Based Approach - Tata McGraw Hill, New
Delhi, India. 919 pp.
Perera WMK, Carter CG, Houlihan DF (1995) Feed consumption, growth and growth efficiency of rainbow
trout [Oncorhynchus mykiss (Walbaum)] fed on diets containing a bacterial single-cell protein.
British Journal of Nutrition 73: 591–603.
Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae:
metabolism and potential products. Water Research 45:11–36.
Phillips DL (2012) Converting isotope values to diet composition: the use of mixing models. Journal of
Mammalogy 93: 342–352.
Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127: 171–
(see also erratum, Oecologia 128: 204).
Phillips S (2005) Environmental impacts of marine aquaculture issue paper. Pacific States Marine Fisheries
Commission. 28 p.
Pongpet J, Ponchunchoovong S, Payooha K (2015) Partial replacement of fishmeal by brewer's yeast
(Saccharomyces cerevisiae) in the diets of Thai Panga (Pangasianodon hypophthalmus × Pangasius
bocourti). Aquaculture Nutrition. doi: 10.1111/anu.12280
Poulose S, Bright Singh IS (2014) Optimization of culture conditions for the production of single cell protein
from marine yeast Candida MCCF 101 as feed supplement in aquaculture. Journal of Aquatic
Biology & Fisheries 2: 283-289.
Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasaveta P (2000) Immunity enhancement in black
tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 191: 271-288
Rhodes MA, Zhou Y, Davis, DA (2015) Use of dried fermented biomass as a fish meal replacement in
practical diets of Florida pompano, Trachinotus carolinus. Journal of Applied Aquaculture 27: 29-
Ribeiro CS, Moreira RG, Cantelmo OA, Esposito E (2014) The use of Kluyveromyces marxianus in the diet
of Red-Stirling tilapia (Oreochromis niloticus, Linnaeus) exposed to natural climatic variation:
effects on growth performance, fatty acids, and protein deposition. Aquaculture Research 45: 812–
Ringo E, Olsen RE, Gonzalez-Vecino J, Wadsworth S, Song SK (2012) Use of immunostimulants and
nucleotides in aquaculture: a review. Journal of Marine Science: Research & Development 2: 1–22.
Rønnestad I, Yúfera M, Ueberschär B, Ribeiro L, Sæle Ø, Boglione C (2013) Feeding behaviour and
digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Reviews
in Aquaculture 5 (Suppl. 1): S59–S98.
Rosenberry B (2011) Shrimp News International. Oberon FMR.
http://www.shrimpnews.com/FreeReportsFolder/FeedsFolder/OberonFMR62011.html
Romarheim OH, Øverland M, Mydland LT, Skrede A, Landsverk T (2011) Bacteria grown on natural gas
prevents soybean meal-induced enteritis in Atlantic salmon. Journal of Nutrition 141: 124–130.
Rumsey GL, Winfree RA, Hughes SG (1992) Nutritional value of dietary nucleic acids and purine bases to
rainbow trout (Oncorhynchus mykiss). Aquaculture 108: 97–110.
Rumsey GL, Hughes SG, Smith RR, Kinsella JE, Shetty KJ (1991) Digestibility and energy values of intact,
disrupted and extracts from dried yeast fed to rainbow trout (Oncorhynchus mykiss). Animal Feed
Science and Technology 33: 185-193.
Sakai M. (1999) Current research status of fish immunostimulants. Aquaculture 172: 63-92.
Sarker PK, Gamble MM, Kelson S, Kapuscinski AR (2016) Nile tilapia (Oreochromis niloticus) show high
digestibility of lipid and fatty acids from marine Schizochytrium sp. and of protein and essential
amino acids from freshwater Spirulina sp. feed ingredients. Aquaculture Nutrition 22: 109-119
Shi X, Luo Z, Chen F, Wei CC, Wu K, Zhu XM, Liu X (2017) Effect of fish meal replacement by Chlorella
meal with dietary cellulase addition on growth performance, digestive enzymatic activities, histology
and myogenic genes’ expression for crucian carp Carassius auratus. Aquaculture Research 48:
-3256.
Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renewable &
Sustainable Energy Reviews 14: 2596–2610.
Skrede A, Berge GM, Storebakken T, Herstad O, Aarstad KG, Sundstøl F (1998) Digestibility of bacterial
protein grown on natural gas in mink, pigs, chicken and Atlantic salmon. Animal Feed Science and
Technology 76: 103-116.
Skrede A, Mydland LT, Øverland M. 2009. Effects of growth substrate and partial removal of nucleic acids in
the production of bacterial protein meal on amino acid profile and digestibility in mink. Animal Feed
Science and Technology 18:689–698.
Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially
compounded aquafeeds: trends and future prospects. Aquaculture 285:146–158.
Teimouri M, Amirkolaie AK, Yeganeh S (2013) The effects of Spirulina platensis meal as a feed supplement
on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture
–399: 14–19.
Teimouri M, Yeganeh S, Amirkolaie AK (2016) The effects of Spirulina platensis meal on proximate
composition, fatty acid profile and lipid peroxidation of rainbow trout (Oncorhynchus mykiss)
muscle. Aquaculture Nutrition 22: 559-566.
Tibaldi E, Chini Zittelli G, Parisi G, Bruno M, Giorgi G, Tulli F, Venturini S, Tredici MR, Poli BM (2015)
Growth performance and quality traits of European sea bass (D. labrax) fed diets including
increasing levels of freeze-dried Isochrysis sp. (T-ISO) biomass as a source of protein and n-3 long
chain PUFA in partial substitution of fish derivatives, Aquaculture 440: 60-68.
Vidakovic A, Langeland M, Sundh H, Sundell K, Olstorpe M, Vielma J, Kiessling A, Lundh T (2016)
Evaluation of growth performance and intestinal barrier function in Arctic Charr (Salvelinus alpinus)
fed yeast (Saccharomyces cerevisiae), fungi (Rhizopus oryzae) and blue mussel (Mytilus edulis).
Aquaculture Nutrition 22: 1348-1360.
Vizcaíno AJ, López G, Sáez MI, Jiménez JA, Barros A, Hidalgo L, Camacho-Rodríguez J, Martínez TF,
Cerón-García MC, Alarcón FJ (2014) Effects of the microalga Scenedesmus almeriensis as fishmeal
alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture 431: 34–43.
WEF 2015. Water Environment Federation. Highlights: Turning Beer Waste into Animal Feed. J. Fulcher.
http://news.wef.org/turning-beer-waste-into-animal-feed/
Weissermel K, Arpe H-J (2003) Industrial Organic Chemistry: Fourth Edition. Wiley-VCH Verlag GmbH &
Co. KgaA: Weinheim. 492 pp.
Weyer KM, Bush DR, Darzins A, Willson BD (2010) Theoretical maximum algal oil production. Bioenergy
Research 3: 204–213.
Zhang HY, Piao XS, Li P, Yi JQ, Zhang Q, Li QY, Liu JD (2013) Effects of single cell protein replacing fish
meal in diets on growth performance, nutrient digestibility, and intestinal morphology in weaned
pigs. Asian-Australasian Journal of Animal Sciences 26: 1320–1328.
Zhao L, Wang W, Huang X, Guo T, Wen W, Feng L, Wei L (2017) The effect of replacement of fish meal by
yeast extract on the digestibility, growth and muscle composition of the shrimp Litopenaeus
vannamei. Aquaculture Research 48: 311-320.
Zhao Y, Yu B, Mao XB, He J, Huang ZQ, Mao Q, Chen DW (2012) Effect of dietary bacterial lysine byproduct
meal supplementation on growth performance and excretion of purine base derivatives in
growing-finishing pig. Livestock Science 149:18–24.