La Biomasa Microbiana como Ingrediente en la Nutrición Acuícola

Autores/as

  • Julián Gamboa-Delgado Universidad Autónoma de Nuevo León
  • Angel Gabriel Alvarado Ibarra Universidad Autónoma de Nuevo León
  • Yonatan Izahi Morales Navarro Universidad Autónoma de Nuevo León
  • Martha G. Nieto-López Universidad Autónoma de Nuevo León
  • David Villarreal-Cavazos Universidad Autónoma de Nuevo León
  • Maribel Maldonado-Muñiz Universidad Autónoma de Nuevo León
  • Mireya Tapia-Salazar Universidad Autónoma de Nuevo León
  • Denis Ricque-Marie Universidad Autónoma de Nuevo León
  • Lucía Elizabeth Cruz-Suárez Universidad Autónoma de Nuevo León

Palabras clave:

biomasa microbiana, nutrición acuícola, levaduras, microalgas, bacterias.

Resumen

Los productos derivados de la pesca y la acuacultura tendrán un papel primordial en la satisfacción de las
necesidades alimentarias de la creciente población humana. La harina de pescado utilizada para la
manufactura de alimentos acuícolas representa un recurso limitado que experimenta alta demanda y una serie
de debates ambientales. Entre las diversas fuentes alternativas de nutrientes, la biomasa microbiana producida
a partir de organismos heterótrofos y autótrofos ha sido considerada como un sustituto prometedor para
reemplazar ingredientes derivados de animales y plantas. Diversos estudios han demostrado que algunas
especies de levaduras, bacterias y microalgas son candidatos viables para ser cultivados y que además
muestran excelentes características nutricionales. Aunque los costos de producción para generar biomasa
microbiana aún siguen siendo altos, nuevos métodos se han centrado en la utilización de substratos
alternativos para su producción. Las características nutricionales de los microorganismos y las tecnologías
emergentes para su producción, permiten pronosticar un mayor uso en la fabricación de alimentos. El presente
manuscrito revisa el estado actual del uso de microorganismos como ingredientes en la nutrición acuícola,
enfatizando aquellos que muestran un sólido potencial como aditivos funcionales y/o ingredientes para
remplazar la harina de pescado. Se presenta una síntesis de técnicas de evaluación nutricional aplicadas para
evaluar el desempeño de la biomasa microbiana, así como resultados recientes sobre los efectos de su
incorporación en dietas formuladas. La capacidad fisiológica que presentan diversas especies de organismos
acuáticos para utilizar este tipo de insumos alternativos es discutida.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aas TS, Grisdale-Helland B, Terjesen BF, Helland SJ (2006) Improved growth and nutrient utilisation in

Atlantic salmon (Salmo salar) fed diets containing a bacterial protein meal. Aquaculture 259: 365–

Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant

and strategies to reduce it. Biotechnology Advances 30: 1344-1353.

Adedayo MR, Ajiboye EA, Akintunde JK, Odaibo A (2011) Single cell proteins: as nutritional enhancer.

Advances in Applied Science Research 2: 396-409.

Arnold S, Smullen R, Briggs M, West M, Glencross B (2016) The combined effect of feed frequency and

ration size of diets with and without microbial biomass on the growth and feed conversion of

juvenile Penaeus monodon. Aquaculture Nutrition 22: 1340-1347.

Arora DK, Mukerji KG, Marth EH (1991) Handbook of Applied Mycology, vol. 3: Foods and Feeds Marcel

Dekker, Inc., New York. 636 pp.

Avnimelech Y (2009) Biofloc Technology - A Practical Guide Book. The World Aquaculture Society, Baton

Rouge, LA. 181 pp.

Basri NA, Shaleh SRM, Matanjun P, Noor NM, Shapawi R (2015) The potential of microalgae meal as an

ingredient in the diets of early juvenile Pacific white shrimp, Litopenaeus vannamei. Journal of

Applied Phycology 27: 857-863.

Becker EW (2007) Micro-algae as a source of protein. Biotechnology Advances 25 207–210.

Béné C, Barange M, Subasinghe R, Pinstrup-Andersen P, Merino G, Hemre G-I, Williams M (2015) Feeding

billion by 2050 - Putting fish back on the menu. Food Security 7: 261-274.

Berto RdS, Pereira GdV, Mouriño JLP, Martins ML, Fracalossi DM (2015) Yeast extract on growth, nutrient

utilization and haemato-immunological responses of Nile tilapia. Aquaculture Research. doi:

1111/are.12715

BFD 2015. Biofuels Digest. Calysta: Biofuels Digest’s 2015 5-Minute Guide update. J. Lane.

http://www.biofuelsdigest.com/bdigest/2015/05/13/calysta-biofuels-digests-2015-5-minute-guideupdate/

Bi Z, He BB (2013) Characterization of microalgae for the purpose of biofuel production. Trans ASABE

:1529–1539.

Biswas G, Korenaga, H, Nagamine R, Kono T, Shimokawa H, Itami T, Sakai M (2012) Immune stimulant

effects of a nucleotide- rich baker’s yeast extract in the kuruma shrimp, Marsupenaeus japonicus.

Aquaculture 366–367: 40–45.

Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for

mariculture. Aquaculture 151: 315-331.

Brunson JF, Romaire RP, Reigh RC (1997) Apparent digestibility of selected ingredients in diets for white

shrimp Penaeus setiferus L. Aquaculture Nutrition 3: 9–16.

Carton-Kawagoshi RJ, Caipang CM (2015) Algal-derived products and their role in shrimp immunity. In:

Caipang, C.M., Bacano-Maningas, M.B.I. Fagutao, F.F. (eds.) Biotechnological advances in shrimp

health management in the Philippines, pp. 73-88. Research Signpost, Kerala, India.

Chen W, Wang W, Yu W (2012) The technique of gonad promotion of Apostichopus japonicus indoors in

winter. Fisheries Science 11: 43-44 (in Chinese)

Cherubini F (2010) The Biorefinery concept: Using biomass instead of oil for producing energy and

chemicals. Energy Conversion and Management 51: 1412–1421.

Conceição LEC, Morais S, Rønnestad I (2007) Tracers in fish larvae nutrition: A review of methods and

applications. Aquaculture 267: 62–75.

Condrey R, Gosselink J, Bennett H (1972) Comparison of the assimilation of different diets by Penaeus

setiferus and P. aztecus. Fisheries Bulletin 70: 1281–1292.

Cruz-Suárez LE, Tapia-Salazar M, Villarreal-Cavazos D, Beltran-Rocha JC, Nieto-López MG, Lemme A,

Ricque-Marie D (2009) Apparent dry matter, energy, protein and amino acid digestibility of four

soybean ingredients in white shrimp Litopenaeus vannamei juveniles. Aquaculture 292: 87-94.

Daniels CL, Merrifield DL, Boothroyd DP, Davies SJ, Factor JR, Arnold KE (2010) Effect of dietary Bacillus

spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae

growth performance, gut morphology and gut microbiota. Aquaculture 304: 49–57.

Dantas EM, Valle BCS, Brito CMS, Calazans NKF, Peixoto SRM, Soares RB (2016) Partial replacement of

fishmeal with biofloc meal in the diet of postlarvae of the Pacific white shrimp Litopenaeus

vannamei. Aquaculture Nutrition 22: 335-342.

De Francesco M, Parisi G, Pérez-Sánchez J, Gómez-Réqueni P, Médale F, Kaushik SJ,

Mecatti M, Poli BM (2007) Effect of high-level fish meal replacement by plant proteins in gilthead sea bream

(Sparus aurata) on growth and body/fillet quality traits. Aquaculture Nutrition 13: 361–372.

De Schryver P, Crab R, Defoirdt T, Boon N, VerstraeteW (2008) The basics of bio-flocs technology: the

added value for aquaculture. Aquaculture 277: 125–137.

Devresse B (2000) Nucleotides–a key nutrient for shrimp immune system. Feed Mix 8: 20–22.

Dewapriya P, Kim S (2014) Marine microorganisms: an emerging avenue in modern nutraceuticals and

functional foods. Food Research International 56: 115-125.

Doelle HW (1994) Microbial Process Development. World Scientific Publishing Co. Pte. Ltd. NJ, USA. 308

pp.

Do Huu H, Tabrett S, Hoffmann K, Koppel P, Lucas JS, Barnes AC (2012) Dietary nucleotides are

semiessential nutrients for optimal growth of black tiger shrimp (Penaeus monodon). Aquaculture

–367, 115–121.

Duong VT, Ahmed F, Thomas-Hall SR, Nowak K, Schenk PM (2015) High protein- and high lipid-producing

microalgae from outback Australia as potential feedstock for animal feed and biodiesel. Frontiers in

Bioengineering and Biotechnology 3: 53.

Emerenciano M, Ballester ELC, Cavalli RO, Wasielesky W (2012) Biofloc technology application as a food

source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis

(Latreille, 1817). Aquaculture Research 43: 447–457.

EPA (1995) Food and Agricultural Industries in AP 42, Fifth Edition, Volume I.

FAO/WHO (1973) Energy and protein requirement. Report of a Joint FAO/WHO ad hoc Expert Committee,

vol. 52. FAO Geneva.

Fábregas J, Herrero C (1985) Marine microalgae as a potential source of single cell protein (SCP). Applied

Microbiology and Biotechnology 23: 110–113.

Ferreira IMPLVO, Pinho O, Vieira E, Tavarela JG (2010) Brewer’s Saccharomyces yeast biomass:

characteristics and potential applications. Trends in Food Science and Technology 21: 77–84.

Francis G, Makkar HPS, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed

ingredients and their effects in fish. Aquaculture 199: 197-227.

Gamboa-Delgado J, Márquez-Reyes JM (2017) Potential of microbial-derived nutrients for aquaculture

development. Reviews in Aquaculture. In press. doi: 10.1111/raq.12157

Gamboa-Delgado J, Fernández-Díaz B., Nieto-López MG, Cruz-Suárez LE (2016) Nutritional contribution of

torula yeast and fish meal to the growth of shrimp Litopenaeus vannamei as indicated by natural

nitrogen stable isotopes. Aquaculture 453: 116-121.

Gamboa-Delgado J, Rodríguez Montes de Oca GA, Román-Reyes JC, Villarreal-Cavazos, D, Nieto-López M,

Cruz-Suárez LE (2017) Assessment of the relative contribution of dietary nitrogen from fish meal

and biofloc meal to the growth of shrimp (Litopenaeus vannamei). Aquaculture Research 48: 2963-

Gamboa-Delgado J, Rojas-Casas MG, Nieto-López MG, Cruz-Suárez LE (2013) Simultaneous estimation of

the nutritional contribution of fish meal, soy protein isolate and corn gluten to the growth of Pacific

white shrimp (Litopenaeus vannamei) using dual stable isotope analysis. Aquaculture 380-383: 33-

García-Ortega A, Trushenski TJ, Kissinger K (2016) Evaluation of fish meal and fish oil replacement by

soybean protein and algal meal from Schizochytrium limacinum in diets for giant grouper

Epinephelus lanceolatus. Aquaculture 452: 1-8.

Ginsberg C, Brown S, Walker S (2008) Bacterial Cell Wall Components. In: Fraser-Reid BO, Tatsuta K,

Thiem J (eds.) Glycoscience, pp 1535-1600. Springer-Verlag Berlin Heidelberg.

Glencross B, Irvin S, Arnold S, Blyth D, Bourne N, Preston N (2014) Effective use of microbial biomass

products to facilitate the complete replacement of fishery resources in diets for the black tiger

shrimp. Penaeus monodon. Aquaculture 431: 12–19.

Gómez-Pastor R, Pérez-Torrado R, Garre E, Matallana E (2011) Recent advances in yeast biomass

production. In: Matovic D (ed.) Biomass - Detection, production and usage, pp. 201-222. InTech,

Rijeka, Croatia.

Goodall JD, Wade NM, Merritt DJ, Sellars MJ, Salee K, Coman GJ (2016) The effects of adding microbial

biomass to grow-out and maturation feeds on the reproductive performance of black tiger shrimp,

Penaeus monodon. Aquaculture 450: 206-212.

Grasso FW, Basil JA (2002) How lobsters, crayfishes, and crabs locate sources of odor: current perspectives

and future directions. Current Opinion in Neurobiology 12: 721–727.

Hara TJ (1993) Chemoreception. In: Evans DH (ed.) The Physiology of Fish. pp. 191–218, CRC Press, Boca

Raton, FL.

Hara TJ (2005) Olfactory responses to amino acids in rainbow trout: revisited. In: Reutter K, Kapoor BG

(eds) Fish Chemosenses, pp. 31–64. Science Publishers, Inc. Enfield, NH.

Hertrampf JW, Piedad-Pascual F (2000) Handbook on Ingredients for Aquaculture Feeds, Kluwer Academic

Publishers, Dordrecht, The Netherlands. 573 pp.

Huang YT, Su CP (2014) High lipid content and productivity of microalgae cultivating under elevated carbon

dioxide. Int. J. Environ. Sci. Technol. 11: 703–710.

IM, Index Mundi (2016) Index Mundi data portal. http://www.indexmundi.com Accessed January 2016.

Ju ZY, Deng D-F, Dominy W (2012) A defatted microalgae (Haematococcus pluvialis) meal as a protein

ingredient to partially replace fishmeal in diets of Pacific white shrimp (Litopenaeus vannamei,

Boone, 1931). Aquaculture 354–355: 50–55.

Kaushik, SJ, Covès D, Dutto G, Blanc D (2004) Almost total replacement of fish meal by plant protein

sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture 230:

–404.

Kim J-K, Lee BK (2000) Mass production of Rhodopseudomonas palustris as diet for aquaculture.

Aquacultural Engineering 23: 281–293.

Kiron V, Phromkunthong W, Huntley M, Archibald I, De Scheemaker G (2012) Marine microalgae from

biorefinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp.

Aquaculture Nutrition 18: 521–531.

Koch JFA, Pezzato LE, Barros MM, Teixeira CP, Junior ACF, A Padovani CR (2011) Levedura como

pronutriente em dietas para matrizes e alevinos de tilápia-do-nilo. Revista Brasileira de Zootecnia

: 2281-2289.

Kinsella JE, German B, Shetty J (1985) Uricase from fish liver: isolation and some properties. Comparative

Biochemistry and Physiology 82B: 621– 624.

Kissinger KR, García-Ortega A, Trushenski JT (2016) Partial fish meal replacement by soy protein

concentrate, squid and algal meals in low fish-oil diets containing Schizochytrium limacinum for

longfin yellowtail Seriola rivoliana. Aquaculture 452: 37-44.

Kobayashi M, Kurata SI (1978) The mass culture and cell utilization of photosynthetic bacteria. Process

Biochemistry 13: 27-30.

Kumar V, Sinha AK, Makkar HP, De Boeck G, Becker K (2012) Phytate and phytase in fish nutrition.

Journal of Animal Physiology and Animal Nutrition 96: 335–64.

Le Vay L, Gamboa-Delgado J (2011) Naturally-occurring stable isotopes as direct measures of larval feeding

efficiency, nutrient incorporation and turnover. Aquaculture 315: 95-103.

Lee B-K, Kim JK (2001) Production of Candida utilis on molasses in different culture types. Aquacultural

Engineering 25:111–124.

Li Y, Xiao G, Mangott A, Kent M, Pirozzi I (2016) Nutrient efficacy of microalgae as aquafeed additives for

the adult black tiger prawn, Penaeus monodon. Aquaculture Research 47: 3625-3635.

Li P, Gatlin III DM (2006) Nucleotide nutrition in fish: Current knowledge and future applications.

Aquaculture 251: 141–152.

Li P, Gatlin III DM (2003) Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feed supplement for

hybrid striped bass (Morone chrysops x M. saxatilis). Aquaculture 219: 681– 692.

Li P, Lawrence AL, Castille FL, Gatlin DM (2007) Preliminary evaluation of a purified nucleotide mixture as

a dietary supplement for Pacific white shrimp Litopenaeus vannamei (Boone). Aquaculture Research

: 887–890.

Liu W, Pearce CM, McKinley RS, Forster IP (2016) Nutritional value of selected species of microalgae for

larvae and early post-set juveniles of the Pacific geoduck clam, Panopea generosa. Aquaculture 452:

-341.

Loo PL, Vikineswary S, Chong VC (2013) Nutritional value and production of three species of purple nonsulphur

bacteria grown in palm oil mill effluent and their application in rotifer culture. Aquaculture

Nutrition 19: 895–907.

Loosli JK, McDonald IW (1968) Nonprotein nitrogen in the nutrition of ruminants. FAO Agricultural Studies

No. 75. 94 pp.

Lunger AN, Craig S, McLean E (2006) Replacement of fish meal in cobia (Rachycentron canadum) diets

using an organically certified protein. Aquaculture 257: 393–399.

Macias-Sancho J, Poersch LH, Bauer W, Romano LA, Wasielesky W, Tesser MB (2014) Fishmeal

substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei:

effects on growth and immunological parameters. Aquaculture 426–427: 120–125.

Mahasneh IA (1997) Production of single cell protein from five starins of the microalga Chlorella sp.

(Chlorophyta). Cytobiosciences 90: 153-161.

Martínez-Rocha L, Gamboa-Delgado J, Nieto-Lopez MG, Ricque-Marie D, Cruz-Suarez LE (2012)

Incorporation of dietary nitrogen from fish meal and pea meal (Pisum sativum) in muscle tissue of

Pacific white shrimp (Litopenaeus vannamei) fed low protein compound diets. Aquaculture Research

: 847-859.

McClanahan T, Allison EH, Cinner JE (2015) Managing fisheries for human and food security. Fish and

Fisheries 16: 78–103.

Miller BM, Litsky W (1976) Single Cell Protein in Industrial Microbiology. McGraw-Hill Book Co., New

York. 406 pp.

Muzinic LA, Thompson KR, Morris A, Webster CD, Rouse DB, Manomaitis L (2004) Partial and total

replacement of fish meal with soybean meal and brewers’ grains with yeast in practical diets for

Australian red claw crayfish Cherax quadricarinatus. Aquaculture 230: 359–376.

Nasseri AT, Rasoul-Amini S, Morowvat MH, Ghasemi Y (2011) Single cell protein: production and process.

American Journal of Food Technology 6: 103–116.

Newaj-Fyzul A, Austin B (2015) Probiotics, immunostimulants, plant products and oral vaccines, and their

role as feed supplements in the control of bacterial fish diseases. Journal of Fish Diseases 38: 937–

Nguyen TH, Fleet GH, Rogers PL (1998) Composition of the cell walls of several yeast species. Applied

Microbiology and Biotechnology 50: 206–212.

Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production – A close look at the

economics. Biotechnology Advances 29: 24–27.

Nouska C, Mantzourani I, Alexopoulos A, Bezirtzoglou E, Bekatorou A, Akrida-Demertzi K, Demertzis P,

Plessas S (2015) Saccharomyces cerevisiae and kefir production using waste pomegranate juice,

molasses, and whey. Czech Journal of Food Sciences 33: 77-282.

National Research Council (NRC) (2011) Nutrient Requirements of Fish. The National Academies Press, 360

p. Washington, DC, USA.

Olafsen JA (2001) Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture 200: 223-

Olaizola M (2003) Commercial development of microalgal bio- technology: From the test tube to the

marketplace. Biomolecular Engineering 20: 459–466.

Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter

outdoor photobioreactors. Journal of Applied Phycology 12:499–506.

Oliva-Teles A (2012) Nutrition and health of aquaculture fish. Journal of Fish Diseases 35: 83-108.

Oliva-Teles A, Goncalves P (2001) Partial replacement of fishmeal by brewer’s yeast (Saccaromyces

cerevisae) in diets for sea bass (Dicentrarchus labrax) juveniles. Aquaculture 202: 269–278.

Oliveira AM, Oliva Neto P (2011). Improvement in RNA extraction from S. cerevisie by optimization in the

autolysis and NH3 hydrolysis. Brazilian Archives of Biology and Technology 54: 1007-1018.

Olsen RL, Hasan MR (2012) A limited supply of fishmeal: impact on future increases in global aquaculture

production. Trends in Food Science & Technology 27: 120–128.

Olvera-Novoa MA, Martinez-Palacios CA, Olivera-Castillo L (2002) Utilization of torula yeast (Candida

utilis) as a protein source in diets for tilapia (Oreochromis mossambicus Peters) fry. Aquaculture

Nutrition 8: 257-264.

Øverland M, Tauson A-H, Shearer K, Skrede A (2010) Evaluation of methane- utilising bacteria products as

feed ingredients for monogastric animals. Archives of Animal Nutrition 64:171–89.

Pacheco-Vega JM, Gamboa-Delgado J, Alvarado-Ibarra AG, Nieto-López MG, Tapia-Salazar M, Cruz-

Suárez LE (2017) Nutritional contribution of fish meal and microbial biomass produced from two

endemic microalgae to the growth of shrimp Litopenaeus vannamei as indicated by natural stable

isotopes. Latin American Journal of Aquatic Research. Accepted.

Panigrahi A, Kiron V, Puangkaew J, Kobayashi T, Satoh S (2005) The viability of probiotic bacteria as a

factor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture 243:

-254.

Pelczar MJ, Chan ECS (2010) Microbiology - An Application Based Approach - Tata McGraw Hill, New

Delhi, India. 919 pp.

Perera WMK, Carter CG, Houlihan DF (1995) Feed consumption, growth and growth efficiency of rainbow

trout [Oncorhynchus mykiss (Walbaum)] fed on diets containing a bacterial single-cell protein.

British Journal of Nutrition 73: 591–603.

Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae:

metabolism and potential products. Water Research 45:11–36.

Phillips DL (2012) Converting isotope values to diet composition: the use of mixing models. Journal of

Mammalogy 93: 342–352.

Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127: 171–

(see also erratum, Oecologia 128: 204).

Phillips S (2005) Environmental impacts of marine aquaculture issue paper. Pacific States Marine Fisheries

Commission. 28 p.

Pongpet J, Ponchunchoovong S, Payooha K (2015) Partial replacement of fishmeal by brewer's yeast

(Saccharomyces cerevisiae) in the diets of Thai Panga (Pangasianodon hypophthalmus × Pangasius

bocourti). Aquaculture Nutrition. doi: 10.1111/anu.12280

Poulose S, Bright Singh IS (2014) Optimization of culture conditions for the production of single cell protein

from marine yeast Candida MCCF 101 as feed supplement in aquaculture. Journal of Aquatic

Biology & Fisheries 2: 283-289.

Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, Menasaveta P (2000) Immunity enhancement in black

tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 191: 271-288

Rhodes MA, Zhou Y, Davis, DA (2015) Use of dried fermented biomass as a fish meal replacement in

practical diets of Florida pompano, Trachinotus carolinus. Journal of Applied Aquaculture 27: 29-

Ribeiro CS, Moreira RG, Cantelmo OA, Esposito E (2014) The use of Kluyveromyces marxianus in the diet

of Red-Stirling tilapia (Oreochromis niloticus, Linnaeus) exposed to natural climatic variation:

effects on growth performance, fatty acids, and protein deposition. Aquaculture Research 45: 812–

Ringo E, Olsen RE, Gonzalez-Vecino J, Wadsworth S, Song SK (2012) Use of immunostimulants and

nucleotides in aquaculture: a review. Journal of Marine Science: Research & Development 2: 1–22.

Rønnestad I, Yúfera M, Ueberschär B, Ribeiro L, Sæle Ø, Boglione C (2013) Feeding behaviour and

digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Reviews

in Aquaculture 5 (Suppl. 1): S59–S98.

Rosenberry B (2011) Shrimp News International. Oberon FMR.

http://www.shrimpnews.com/FreeReportsFolder/FeedsFolder/OberonFMR62011.html

Romarheim OH, Øverland M, Mydland LT, Skrede A, Landsverk T (2011) Bacteria grown on natural gas

prevents soybean meal-induced enteritis in Atlantic salmon. Journal of Nutrition 141: 124–130.

Rumsey GL, Winfree RA, Hughes SG (1992) Nutritional value of dietary nucleic acids and purine bases to

rainbow trout (Oncorhynchus mykiss). Aquaculture 108: 97–110.

Rumsey GL, Hughes SG, Smith RR, Kinsella JE, Shetty KJ (1991) Digestibility and energy values of intact,

disrupted and extracts from dried yeast fed to rainbow trout (Oncorhynchus mykiss). Animal Feed

Science and Technology 33: 185-193.

Sakai M. (1999) Current research status of fish immunostimulants. Aquaculture 172: 63-92.

Sarker PK, Gamble MM, Kelson S, Kapuscinski AR (2016) Nile tilapia (Oreochromis niloticus) show high

digestibility of lipid and fatty acids from marine Schizochytrium sp. and of protein and essential

amino acids from freshwater Spirulina sp. feed ingredients. Aquaculture Nutrition 22: 109-119

Shi X, Luo Z, Chen F, Wei CC, Wu K, Zhu XM, Liu X (2017) Effect of fish meal replacement by Chlorella

meal with dietary cellulase addition on growth performance, digestive enzymatic activities, histology

and myogenic genes’ expression for crucian carp Carassius auratus. Aquaculture Research 48:

-3256.

Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renewable &

Sustainable Energy Reviews 14: 2596–2610.

Skrede A, Berge GM, Storebakken T, Herstad O, Aarstad KG, Sundstøl F (1998) Digestibility of bacterial

protein grown on natural gas in mink, pigs, chicken and Atlantic salmon. Animal Feed Science and

Technology 76: 103-116.

Skrede A, Mydland LT, Øverland M. 2009. Effects of growth substrate and partial removal of nucleic acids in

the production of bacterial protein meal on amino acid profile and digestibility in mink. Animal Feed

Science and Technology 18:689–698.

Tacon AGJ, Metian M (2008) Global overview on the use of fish meal and fish oil in industrially

compounded aquafeeds: trends and future prospects. Aquaculture 285:146–158.

Teimouri M, Amirkolaie AK, Yeganeh S (2013) The effects of Spirulina platensis meal as a feed supplement

on growth performance and pigmentation of rainbow trout (Oncorhynchus mykiss). Aquaculture

–399: 14–19.

Teimouri M, Yeganeh S, Amirkolaie AK (2016) The effects of Spirulina platensis meal on proximate

composition, fatty acid profile and lipid peroxidation of rainbow trout (Oncorhynchus mykiss)

muscle. Aquaculture Nutrition 22: 559-566.

Tibaldi E, Chini Zittelli G, Parisi G, Bruno M, Giorgi G, Tulli F, Venturini S, Tredici MR, Poli BM (2015)

Growth performance and quality traits of European sea bass (D. labrax) fed diets including

increasing levels of freeze-dried Isochrysis sp. (T-ISO) biomass as a source of protein and n-3 long

chain PUFA in partial substitution of fish derivatives, Aquaculture 440: 60-68.

Vidakovic A, Langeland M, Sundh H, Sundell K, Olstorpe M, Vielma J, Kiessling A, Lundh T (2016)

Evaluation of growth performance and intestinal barrier function in Arctic Charr (Salvelinus alpinus)

fed yeast (Saccharomyces cerevisiae), fungi (Rhizopus oryzae) and blue mussel (Mytilus edulis).

Aquaculture Nutrition 22: 1348-1360.

Vizcaíno AJ, López G, Sáez MI, Jiménez JA, Barros A, Hidalgo L, Camacho-Rodríguez J, Martínez TF,

Cerón-García MC, Alarcón FJ (2014) Effects of the microalga Scenedesmus almeriensis as fishmeal

alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture 431: 34–43.

WEF 2015. Water Environment Federation. Highlights: Turning Beer Waste into Animal Feed. J. Fulcher.

http://news.wef.org/turning-beer-waste-into-animal-feed/

Weissermel K, Arpe H-J (2003) Industrial Organic Chemistry: Fourth Edition. Wiley-VCH Verlag GmbH &

Co. KgaA: Weinheim. 492 pp.

Weyer KM, Bush DR, Darzins A, Willson BD (2010) Theoretical maximum algal oil production. Bioenergy

Research 3: 204–213.

Zhang HY, Piao XS, Li P, Yi JQ, Zhang Q, Li QY, Liu JD (2013) Effects of single cell protein replacing fish

meal in diets on growth performance, nutrient digestibility, and intestinal morphology in weaned

pigs. Asian-Australasian Journal of Animal Sciences 26: 1320–1328.

Zhao L, Wang W, Huang X, Guo T, Wen W, Feng L, Wei L (2017) The effect of replacement of fish meal by

yeast extract on the digestibility, growth and muscle composition of the shrimp Litopenaeus

vannamei. Aquaculture Research 48: 311-320.

Zhao Y, Yu B, Mao XB, He J, Huang ZQ, Mao Q, Chen DW (2012) Effect of dietary bacterial lysine byproduct

meal supplementation on growth performance and excretion of purine base derivatives in

growing-finishing pig. Livestock Science 149:18–24.

Descargas

Publicado

2017-11-30

Cómo citar

Gamboa-Delgado, J., Alvarado Ibarra, A. G., Morales Navarro, Y. I., Nieto-López, M. G., Villarreal-Cavazos, D., Maldonado-Muñiz, M., Tapia-Salazar, M., Ricque-Marie, D., & Cruz-Suárez, L. E. (2017). La Biomasa Microbiana como Ingrediente en la Nutrición Acuícola. Avances En Nutrición Acuicola. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/15

Artículos más leídos del mismo autor/a

1 2 3 > >>