Bacteriófagos: Herramientas de control biológico para una acuicultura sostenible

Autores/as

  • Ángel I. Campa-Córdova Centro de Investigaciones Biológicas del Noroeste, S.C.
  • Ana C. Sánchez-Ortiz2 Universidad de Guadalajara
  • Gabriel Aguirre-Guzmán Universidad Autónoma de Tamaulipas
  • José M. Mazón-Suástegui Centro de Investigaciones Biológicas del Noroeste, S.C.
  • Ma del C. Flores-Miranda Universidad de Guadalajara
  • Antonio Luna-González CIIDIR Instituto Politécnico Nacional
  • Norma Ochoa-Álvarez

Palabras clave:

Crassostrea sikamea, Bacillus spp., microalgas, moluscos, antibióticos

Resumen

En este estudio se evaluó in vitro la interacción entre bacterias probióticas del género Bacillus y dos especies de microalgas y su efecto posterior in vivo en el cultivo del ostión Kumamoto Crassostrea sikamea. Las cepas probióticas de Bacillus licheniformis (MAt32), B. subtilis (MAt43) y B. subtilis subtilis (GAtB1) se inocularon individualmente por triplicado en matraces de 250 mL conteniendo 1 × 104 unidades formadoras de colonias (UFC) mL-1 de bacterias y 4.5 × 104 cél mL-1 de microalgas (Isochrysis galbana o Chaetoceros calcitrans) para evaluar su crecimiento durante un cultivo de 7 días. Adicionalmente, se trataron por triplicado semillas de C. sikamea con cuatro cepas de bacilos individuales o combinadas en un cultivo de 28 días a una concentración de 1x106 UFC mL−1 de la manera siguiente: (a) Control, sin tratamientos; (b) Combinación de dos antibióticos (10 mg L−1); (c) B. licheniformis; (d) B. subtilis; (e) B. subtilis subtilis; (f) mezcla de bacilos. Los resultados mostraron incremento significativo (P < 0.05) en el crecimiento de cepas de Bacillus en co-cultivo con microalgas mientras que el crecimiento de I. galbana co-cultivado con bacterias no se redujo significativamente (P > 0.05) con el grupo control. La semilla de C. sikamea tratada con Bacillus mostró crecimiento y supervivencia significativo comparado con el grupo control. En este estudio, la microalga C. calcitrans fue susceptible a la presencia de bacterias probióticas. Sin embargo, la reducción del crecimiento microalgal observada in vitro no afectó el incremento en crecimiento y supervivencia en el cultivo de semilla de C. sikamea expuesta a bacterias probióticas comparada con aquellas semillas cultivadas sin probióticos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Camara MD, Davis JP, Sekino M, Hedgecock D, Li G, Langdon CJ, Evans S (2008) The Kumamoto oyster Crassostrea sikamea is neither rare nor threatened by hybridization in the northern Ariake sea, Japan. J Shellfish Res 27:313-322

Wang H, Qian L, Wang A, Guo X (2013) Occurrence and Distribution of Crassostrea sikamea (Amemiya 1928) in China. J Shellfish Res 32:439-446. https://doi.org/http://dx.doi.org/10.2983/035.032.0224

Sekino M (2009) In search of the Kumamoto oyster Crassostrea sikamea (Amemiya, 1928) based on molecular markers: is the natural resource at stake? Fish Sci 75:819-831. doi.org/10.1007/s12562-009-0100-6

Cáceres-Martínez J, Vásquez-Yeomans R, Guerrero-Rentería Y (2012) Early gametogenesis of Kumamoto oyster (Crassostrea sikamea). Hidrobiológica 22(2):181-184.

Elston RA, Moore J, Abbott CL (2012) Denman Island disease (causative agent Mikrocytos mackini) in a new host, Kumamoto oysters Crassostrea sikamea. Dis Aquat Organ 102:65-71. https://doi.org/10.3354/dao02519

Cáceres-Martínez J, Vásquez-Yeomans R (2013) Enfermedades, parásitos y episodios de mortalidad de ostiones de importancia comercial en México y sus implicaciones para la producción. Cienc Pesq 21:5-48.

Trabal-Fernández N, Mazón-Suástegui JM, Vázquez-Juárez R, Ascencio-valle F, Romero J (2014) Changes in the composition and diversity of the bacterial microbiota associated with oysters (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) during commercial production. FEMS Microbiol Ecol 88:69-83. https://doi.org/10.1111/1574-6941.12270

Sainz J, Maeda-Martínez A, Ascencio F (1998) Microb Ecol 35:188. https://doi.org/10.1007/s002489900073

Campa-Córdova AI, Luna-González A, Zarain-Herzberg M, Cáceres-Martínez JC (2005) Prophylactic use of antibiotics in larval culture of Argopecten ventricosus (Sowerby, 1835). J. Shellfish Res 24(4):923-930. http://dx.doi.org/10.2983/0730-8000(2005)24[923:PUOAIL]2.0.CO;2

Li N, Lin Q, Fu X, Guo H, Liu L, Wu S (2015) Development and efficacy of a novel streptomycin-resistant Flavobacterium johnsoniae vaccine in grass carp (Ctenopharyngodon idella) Aquaculture 448:93-97. http://dx.doi.org/10.1016/j.aquaculture.2015.05.047

Holmström K, Gräslund S, Wahlströom A, Poungshompoo S, Bengtsson BE, Kautsky N (2003). Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int J Food Sci Technol 38:255-266. doi:10.1046/j.1365-2621.2003.00671.x

Nwachi OF (2013) An overview of the importance of probiotics in aquaculture. J Fish Aquat Sci 8:30-32.

Navarrete P, Caruffo M (2015) Antibiotics in aquaculture: impacts and alternatives. APUA Newsl 33(2):4-7.

Martínez-Córdova LR, Emerenciano M, Miranda-Baeza A, Martínez-Porchas M (2015) Microbial-based systems for aquaculture of fish and shrimp:An updated review. Rev Aquac 7:131-148. doi:10.1111/raq.12058

Zhang Q, Tan B, Mai K, Zhang W, Ma H, Ai Q, Wang X, Liufu Z (2011) Dietary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquac Res 42:943-952. doi:10.1111/j.1365-2109.2010.02677.x

Tuan TN, Duc PM, Hatai K (2013) Overview of the use of probiotics in aquaculture. Int J Res Fish Aquac 3(3):89-97.

Abasolo-Pacheco F, Saucedo PE, Mazón-Suástegui JM, Tovar-Ramírez D, Araya R, Ramírez-Orozco JM, Campa-Córdova ÁI (2016) Isolation and use of beneficial microbiota from the digestive tract of lions-paw scallop Nodipecten subnodosus and winged pearl oyster Pteria sterna in oyster aquaculture. Aquac Res 47:3042–3051. doi:10.1111/are.12754

Escamilla-Montes R, Luna-González A, Flores-Miranda MC, Álvarez-Ruiz P, Fierro-Coronado JA, Sanchez-Ortiz AC (2015) Isolation and characterization of potential probiotic bacteria suitable for mollusk larvae cultures. Thai J Veterenary Med 45(1):11-21.

Prado S, Romalde JL, Barja JL (2010). Review of probiotics for use in bivalve hatcheries. Vet Microbiol 145:187-97. doi:10.1016/j.vetmic.2010.08.021

Gibson LF, Woodworth J, George AM (1998) Probiotic activity of Aeromonas media on the Pacific oyster , Crassostrea gigas , when challenged with Vibrio tubiashii. Aquaculture 169:111-120.

Fuentes J, Garbayo I, Cuaresma M, Montero Z, González-del-Valle M, Vílchez C (2016) Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar Drugs 14:100. https://doi.org/10.3390/md14050100

Avendaño RE, Riquelme CE (1999) Establishment of mixed-culture probiotics and microalgae as food for bivalve larvae. Aquac Res 30: 893-900.

Sánchez-Ortiz AC, Luna-González A, Campa-Córdova ÁI, Escamilla-Montes R, Flores-Miranda MC, Mazón-Suástegui JM (2015) Isolation and characterization of potential probiotic bacteria from pustulose ark (Anadara tuberculosa) suitable for shrimp farming. Lat Am J Aquat Res 43:123-136. doi:10.3856/vol43-issue1-fulltext-11

Sánchez-Ortiz AC, Angulo C, Luna-González A, Álvarez-Ruiz P, Mazón-Suástegui JM, Campa-Córdova AI (2016) Effect of mixed–Bacillus spp. isolated from pustulose ark Anadara tuberculosa on growth, survival, viral prevalence, and immune-related gene expression in shrimp Litopenaeus vannamei. Fish Shellfish Immunol 59:95-102. http://dx.doi.org/10.1016.j.fsi.2016.10.022

Guillard RRL (1973) Handbook of phycological methods. Cambridge ed Division rates London.

Benbrook CM (2002) Antibiotic Drug Use in US Aquaculture. Northwest Science and Environmental Policy Center Sandpoint, Idaho. http://www.iatp.org/documents/antibiotic-drug-use-in-us-aquaculture-1.

Campa-Córdova AI, González-Ocampo HA, Luna-González A, Mazón-Suástegui JM, Ascencio F (2009) Growth survival and superoxide dismutase activity in juvenile Crassostrea corteziensis (Hertlein, 1951) treated with probiotics. Hidrobiológica 19(2):151-157.

Luis-Villaseñor IE, Campa-Córdova AI, Huerta-Aldaz N, Luna-González A, Mazón-Suástegui JM, Flores-Higuera F (2013) Effect of beneficial bacteria on larval culture of Pacific whiteleg shrimp, Litopenaeus vannamei. Afr J Microbiol Res 7(27):3471-3478.

Ziaei-Nejad S, Rezaei MH, Takami GA, Lovet DL, Mirvaghefi AR, Shakouri M (2006) The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture 252(2-4):516-524. doi:10.1016/j.aquaculture.2005.07.021.

Hemaiswarya S, Raja R, Kumar R, Ganesan V, Anbazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27:1737-1746. https://doi.org/10.1007/s11274-010-0632-z

Nicolas JL, Corre S, Gauthier G, Robert R, Ansquer D (1996) Bacterial problems associated with scallop (Pecten maximus) larval culture. Dis Aquat Org 27:67-76.

Aguilar-Macías OL, Ojeda-Ramírez JJ, Campa-Córdova AI, Saucedo PE (2010) Evaluation of natural and commercial probiotics for improving growth and survival of the pearl oyster, Pinctada mazatlanica, during late hatchery and early field culturing. J World Aquac Soc 41:447–454. doi:10.1111/j.1749-7345.2010.00386.x

Campa-Córdova AI, Luna-González A, Ascencio F, Cortés-Jacinto E, Cáceres-Martínez CJ (2006) Effects of chloramphenicol, erythromycin, and furazolidone on growth of Isochrysis galbana and Chaetoceros gracilis. Aquaculture 260:145-150. https://doi.org/10.1016/J.Aquaculture.2006.06.014

Grossart HP, Czub G, Simon M (2006) Algae–bacteria interactions and their effects on aggregation and organic matter flux in the sea. Enviromental Microbiol 8:1074-1084. doi:10.1111/j.1462-2920.2006.00999.x

Grossart HP, Simon M (2007) Interactions of planktonic algae and bacteria: effects on algal growth and organic matter dynamics. Aquat Microb Ecol 47:163-176. doi:10.3354/ame047163

Toi HT, Boeckx P, Sorgeloos P, Bossier P, Van Stappen G (2014) Co-feeding of microalgae and bacteria may result in increased N assimilation in Artemia as compared to mono-diets, as demonstrated by a 15N isotope uptake laboratory study. Aquaculture 422–423:109-114. https://doi.org/10.1016/j.aquaculture.2013.12.005

De Paiva-Maia E, Alves-Modesto G, Otavio-Brito L, Olivera A, Vasconcelos-Gesteira TC (2013) Effect of a commercial probiotic on bacterial and phytoplankton concentration in intensive shrimp farming (Litopenaeus vannamei) recirculation systems. Lat Am J Aquat Res 41:126-137. https://doi.org/10.3856/vol41-issue1-fulltext-10

Pacheco-Vega JM, Cadena-Roa MA, Leyva-Flores JA, Zavala-Leal OI, Pérez-Bravo E, Ruiz-Velazco JMJ (2018) Effect of isolated bacteria and microalgae on the biofloc characteristics in the Pacific white shrimp culture. Aquac Report. https://doi.org/10.1016/j.aqrep.2018.05.003

Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnol Adv 29:896-907. https://doi.org/10.1016/j.biotechadv.2011.07.009

Molina-Cárdenas CA, Sánchez-Saavedra MP (2017) Inhibitory effect of benthic diatom species on three aquaculture pathogenic vibrios. Algal Res 27:131-139. https://doi.org/10.1016/j.algal.2017.09.004

Nemutanzhela ME, Roets Y, Gardiner N, Lalloo R (2014) The use and benefits of Bacillus based biological agents in aquaculture. In: Hernandez-Vergara M. (ed.) Sustainable aquaculture techniques. Murcia Spain.

Timmerman H, Koning C, Mulder L, Rombouts F, Beynen A (2004) Monostrain, multistrain and multispecies probiotics—a comparison of functionality and efficacy. Int J Food Microbiol 96(3):219-233.

Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214-220.

Luis-Villaseñor IE, Macías-Rodríguez ME, Gómez-Gil B, Ascencio-Valle F, Campa-Córdova ÁI (2011) Beneficial effects of four Bacillus strains on the larval cultivation of Litopenaeus vannamei. Aquaculture 321:136-144. https://doi.org/10.1016/j.aquaculture.2011.08.036

Setyati WA, Martani E, Zainuddin M (2014) Selection, identification and optimization of the growth water probiotic consortium of mangrove ecosystems as bioremediation and biocontrol in shrimp ponds. JPHPI 17(3):243-253. doi.org/10.17844/jphpi.v17i3.8913

Newaj-Fyzul A, Al-Harbi AH, Austin B (2014) Review : Developments in the use of probiotics for disease control in aquaculture. Aquaculture 431:1-11. https://doi.org/10.1016/j.aquaculture.2013.08.026

Aly SM, Abdel-Galil Ahmed Y, Abdel-Aziz Ghareeb A, Mohamed MF (2008) Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 25: 128-136. https://doi.org/10.1016/j.fsi.2008.03.013

Zokaeifar H, Balcázar JL, Saad CR, Kamarudin MS, Sijam K, Arshad A, Nejat N (2012) Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 33:683-689. https://doi.org/10.1016/j.fsi.2012.05.027

Dhama K, Tiwari R, Khan RU, Chakraborty S, Gopi M, Karthik K, Saminathan M, Desingu PA, Sunkara LT (2014) Growth promoters and novel feed additives improving poultry production and health, bioactive principles and beneficial applications: the trends and advances-A review. Int J Pharmacol 10:129-159.

Silva-Aciares F, Moraga D, Auffret M, Tanguy A, Riquelme C (2013) Transcriptomic and cellular response to bacterial challenge (pathogenic Vibrio parahaemolyticus) in farmed juvenile Haliotis rufescens fed with or without probiotic diet. J Invertebr Pathol 113:163-176. doi:10.1016/j.jip.2013.03.004.

Descargas

Publicado

2022-10-12

Cómo citar

Campa-Córdova, Ángel I., Sánchez-Ortiz2, A. C., Aguirre-Guzmán, G., Mazón-Suástegui, J. M., Flores-Miranda, M. del C., Luna-González, A., & Ochoa-Álvarez, N. (2022). Bacteriófagos: Herramientas de control biológico para una acuicultura sostenible . Avances En Nutrición Acuicola, 1(1), 223–244. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/368

Artículos más leídos del mismo autor/a