Taurine synthesis in teleost-importance of cysteamine pathway

Autores/as

  • Yutaka Haga Tokyo University of Marine Science and Technology
  • Maria Mojena Gonzales Tokyo University of Marine Science and Technology
  • Hidehiro Kondo Tokyo University of Marine Science and Technology
  • Ikuo Hirono Tokyo University of Marine Science and Technology
  • Shuichi Satoh Tokyo University of Marine Science and Technology

Palabras clave:

Taurine, Synthesis, Teleosts

Resumen

Taurine plays various roles in animals such as growth promotion, osmoregulation, bile acid conjugation,
neurotransmission, cardiac muscle contraction, antioxidant activity, and reproduction. Taurine is one of the
essential nutrients for marine fish larvae and in fishes which lack endogenous taurine production. Taurine is
synthesized from methionine via cysteine. Cysteine is converted to cysteine sulfinic acid by activity of cysteine
dioxygenase (CDO) and cysteine sulfinic acid is converted into hypotaurine by cysteine sulfinic acid
decarboxylase (CSD) in CSD pathway which is considered to be a major taurine production pathway in fish.
Hypotaurine is finally converted into taurine by auto-oxidation. In addition to CSD pathway, there is two other
taurine synthetic pathways are know: cysteic acid pathway where cysteine is oxidized into cysteic acid, and it is
directly converted into taurine by cysteic acid decarboxylase (CAD) activity and cysteamine pathway where
cysteine is converted into cysteamine and it is converted into hypotaurine by cysteamine dioxygenase (ADO).
However, detail on taurine production by these two pathways is not understood.
Common carp is widely cultured in the world and world production of cypriniforms is highest among food fish
species. Rainbow trout is known to have sufficient CSD activity to produce taurine via methionine. In contrast,
it was reported that CSD activity in common carp is about half of that reported in rainbow trout. However,
common carp did not show growth retardation when it was fed taurine deficient diet. These observations led
265
Haga, Y. et al., 2017.Taurine synthesis in teleosts-importance of cysteamine pathway. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G.,
Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, Nuevo León, México, pp. 264-283. ISBN 978-607-27-0822-8.
hypothesis that common carp is able to produce sufficient amount of taurine beside the CSD pathway. The
purpose of the present study is to investigate effect of dietary supplementation of cysteine, cysteamine,
methionine, and taurine on the growth, sulfur amino acid content, and gene expression of taurine synthesizing
enzymes.
Eight different diets supplemented with taurine, methionine, cysteine, and cysteamine were fed to the juvenile
common carps for 30 days. For control, a diet without supplying sulfur amino acid was fed. Feeding diets
supplemented sulfur amino acid resulted in better survival, growth, feed conversion ratio, and protein efficiency
ratio except treatments supplemented with cysteamine. It was observed that the supplementation of dietary
cysteamine caused growth retardation, myopathy, and body deformity in common carp. All sulfur amino acids
increased taurine deposition in the carcass and 1.5% cysteamine increased taurine deposition by 1.8 and 5.5
times higher than those of the methionine and cysteine treatments. CDO was tended to be down-regulated by
cysteine and low dose of taurine but up-regulated by a high dose of cysteamine. It was observed that CSD was
down-regulated by sulfur amino acids. ADO was down-regulated by methionine, cysteine and low dose of
taurine but up-regulated by cysteamine.
These results suggest that CSD pathway plays a role in taurine synthesis and cysteamine pathway is another
major taurine synthesizing pathway in common carp.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ikuo Hirono, Tokyo University of Marine Science and Technology

Al-Feky SSA, El-Sayed A-FM, Ezzat AA. 2016. Dietary taurine improves reproductive performance of Nile
tilapia (Oreochromis niloticus) broodstock. Aquaculture Nutrition 22: 392-399.
Calduch-Giner JA, Davey G, Saera-Vila A, Houeix B, Talbot A, Prunet P, Cairns MT, Perez-Sanchez J. 2010.
Use of microarray technology to assess the time course of liver stress response after confinement
exposure in gilthead sea bream (Sparus aurata L.). BMC Genomics 11: 193-210.
Chang Y-C, Ding S-T, Lee Y-H, Wang Y-C, Huang M-F, Liu I-H. 2013. Taurine homeostasis requires de novo
synthesis via cysteine sulfinic acid decarboxylase during zebrafish early embryogenesis. Amino Acids
44:615–629
FAO. The State of World Fisheries and Aquaculture. 2016. Rome, Italy.
Gaume V, Figard H, Mougin F, Guilland JC, Alberto JM, Gueant JL, Alber D, Demougeot C, Berthelot A. 2005.
Effect of a swim training on homocysteine and cysteine levels in rats. Amino Acids 28: 337-342.
Goto T, Ui T, Une M, Kuramoto T, Kihira K, Hoshita T. 1996. Bile salt composition and distribution of the
D-cysteinolic acid conjugated bile salts in fish. Fish Sci 62: 606–609.
Goto T, Matsumoto T, Murakami S, Takagi S, Hasumi F. 2003. Conversion of cysteate into taurine in liver of
fish. Fish. Sci. 69: 216-218.
Haga Y, Kumagai A, Kondo H, Hirono I, Satoh S. 2015. Isolation, molecular characterization of cysteine
sulfinic acid decarboxylase (CSD) of red sea bream Pagrus major and yellowtail Seriola
quinquieradiata and expression analysis of CSD from several marine fish species. Aquaculture 449,
8-17. DOI: 10.1016/j.aquaculture.2015.04.004
Hagey LR, Møller PR, Hofmann AF, Krasowski MD: Diversity of bile salts in fish and amphibians: evolution of
a complex biochemical pathway. Physiol Biochem Zool 2010, 83:308-321.
Haga, Y. et al., 2017.Taurine synthesis in teleosts-importance of cysteamine pathway. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G.,
Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, Nuevo León, México, pp. 264-283. ISBN 978-607-27-0822-8.
Han X, Patters AB, Jones DP, Zelikovic I, Chesney RW.2006. The taurine transporter: mechanisms of
regulation. Acta Physiol 187:61-73.
Hiraoka Y, Sasaki Y, Sonoda K. 2011. Investigation of contents of nitrogenous constituents in the extracts of
seafood caught in Ehime (Part1). Research Report of Ehime Institute of Industrial Technology 49:
19-22. (in Japanese).
Impellizzeri G, Mangiafico S, Oriente G, Piattelli M, Sciuto S, Fattorusso E, Magno S, Santacroce C, Sica D.
1975. Constituents of red algae. I. Amino acids and lowmolecular-weight carbohydrates of some
marine red algae. Phytochemistry 14, 1549-1557.
Ito K. 1965. Occurrence of D-glyceryltaurine and amino acid pattern in the extractives of a red algae,
Gymnogongrus flabelliformis. Nippon Suisan Gakkaishi 31, 307-311.
Ishihara Y, Nakata C, Morimoto M, Mori N, Watanabe F. 2013. Free amino acid and mineral contents in viscera
of bluefin tuna Thunnus orientalis unloaded in Sakai fishing port, Tottori Prefecture. Nippon Suisan
Gakkaishi 79, 433-435.
Iwatani H, Inoue K, Takei Y, Abe H. 2012. Changes in the free amino acid content in the skeletal muscle of
fourspine sculpin Cottus kazika reared in different environmental salinities. Aquac. Sci. 60, 495-501.
Jacobsen JG, Smith LH. 1968. Biochemistry and physiology of taurine and taurine derivatives. Physiol. Rev.
48: 424-511.
Jusadi D, Ruchani S, Mokoginta I, Ekasari J. 2011. Improvement of survival and development of Pacific white
shrimp Litopenaeus vannamei by feeding taurine enriched rotifers. J. Aquac. Indonesia 10: 131-136
(in Indonesian with English abstract).
Kataoka H, Ohishi K, Imai J, Omori M, Mukai M, Makita M. 1986. Distribution of cysteine sulfonate
decarboxylase and cysteamine dioxygenase activity in various animal tissues. Sulfar Amino Acids 9:
293-298. (in Japanese with English abstract)
Haga, Y. et al., 2017.Taurine synthesis in teleosts-importance of cysteamine pathway. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G.,
Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, Nuevo León, México, pp. 264-283. ISBN 978-607-27-0822-8.
Kato K, Yamamoto M, Hung NP, Fukada H, Biswas A, Yamamoto S, Takii K, Murata O, Miyashita S. 2012.
Effect of taurine supplementation on skin thickness and scale detachability in red sea bream Pagrus
major. Aquaculture Science, 60, 59-64.
Kato K, Yamamoto M, Peerapon K, Fukada H, Biswas A, Yamamoto S, Takii K, Miyashita S. 2014. Effects of
dietary taurine levels on epidermal thickness and scale loss in red sea bream, Pagrus major.
Aquaculture Research 45: 1818-1824.
Khaoian P, Ogita H, Watanabe H, Nishioka M, Kanosue F, Ngyuen HP, Fukuda H, Masumoto T. 2014. Effects
of taurine supplementation to low fishmeal practical diet on growth, tissue taurine content and taste of
1 year yellowtail Seriola quinqueradiata. Aquaculture Science 62: 415-423.
Kim H-Y, Shin J-W, Park H-O, Choi S-H, Jang Y-M, Lee S-O. 2000. Comparison of taste compounds of red sea
bream, rockfish and flounders differing in the location and growing conditions. Kr. J. Food Sci.
Technol. 32: 550-563 (in Korean with English abstract).
Kim S-K, Takeuchi T, Yokoyama M, Murata Y, Kaneniwa M, Sakakura Y. 2005. Effect of dietary taurine levels
on growth and feeding behavior of juvenile Japanese flounder Paralichthys olivaceus. Aquaculture
250: 765-774.
Kurihara A. 2008. Studies on exploring effective nutrients for octopus paralarva in Artemia. Ph D thesis,
Graduate School of Marine Science and Technology, Tokyo University of Marine Science and
Technology, Tokyo, Japan, 150p. (in Japanese)
Lindberg B. 1955. Methyrated taurines and choline sulfate in red algae. Acta Chem Scand 9, 1323.
Liu QR, López-Corcuera B, Mandiyan S, Nelson H, Nelson N. 1993. Molecular characterization of four
pharmacologically distinct gamma-aminobutyric acid transporters in mouse brain. J. Biol Chem. 268:
2106-2112.
Haga, Y. et al., 2017.Taurine synthesis in teleosts-importance of cysteamine pathway. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G.,
Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, Nuevo León, México, pp. 264-283. ISBN 978-607-27-0822-8.
Liu P, Ge X, Ding H, Jiang H, Christensen BM, Li J. 2012. Role of glutamate decarboxylase-like protein 1
(GADL1) in taurine biosynthesis. J. Biol. Chem. 287:40898-40906.
Matsunari H, Takeuchi T, Murata Y, Takahashi M, Ishibashi N, Chuda H, Arakawa T. 2003. Changes in the
taurine content during the early growth stages of artificially produced yellowtail compared with wild
fish. Nippon Suisan Gakkaishi 69: 757–762.
Matsunari H, Furuita H, Yamamoto T, Kim S-K, Sakakura Y, Takeuchi T. 2008. Effect of dietary taurine and
cystine on growth performance of juvenile red sea bream Pagrus major. Aquaculture 274: 142-147.
Morishita T, Uno K, Arai T, Takahashi T. 1989. Comparison of the amounts of extractive constituents in the
meats of cultured mathods, and those of wild. Nippon Suisan Gakkaishi 55: 1565-1573.
Morita T, Sakiyama K, Fujimoto H, Yamada T, Tominaga O. 2011. Improvement of survival of hatchery-raise
fry of Japanese flounder soon after release into wild by feeding taurine enriched feed and sandy
substrate. Gihou 13: 41-47. (in Japanese)
Murakoshi Y, Hatanaka S. 1977. Sulfer-containing amino acid in nature. Journal of Synthetic Organic
Chemistry, Japan 35: 343-353.
Nakamura S, Miyamoto A, Tsuchihashi Y. 2014. Influence of low-fishmeal diet used the fish powder
alternative material on growth performance and epidermal thickness of red sea bream Pagrus major.
Bull. Mie Pref. Fish. Res. Inst., 23: 11-17 (in Japanese).
Ohyama H, Kubo M, Enomoto T. 1991. Determination of taurine in foods using an absorption-distribution
HPLC. J. Jpn. Soc. Nutr. Food Sci. 44: 305-308 (in Japanese with English abstract).
Ozawa A, Aoki S, Suzuki K, Sugimoto M, Fujita T, Tsuji K. 1984. Taurine content in fish and shells. Journal
of Japan Society of Nutrition and Food Science 37: 561-567. (in Japanese).
Paneflorida VD. 2004. Amino acid profiles in the midgut, ovary, developing eggs and zoea of the mud crab,
Scylla serrata. Israeli J. Aquac. 56: 111-123.
Haga, Y. et al., 2017.Taurine synthesis in teleosts-importance of cysteamine pathway. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G.,
Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, Nuevo León, México, pp. 264-283. ISBN 978-607-27-0822-8.
Rise MT, Gordon WN, Hall JR, Booman M, Hori TS, Trippel EA, Gamperl AK. 2014. Variation in embryonic
mortality and maternal transcript expression among atlantic cod (Gadus morhua) broodstock: A
functional genomic study. Mar Genomics 18: 3-20.
Ronnestad I, Tonheim SK, Fyhn HJ, Rojas-Garci CR, Kamisaka Y, Koven W, Finn RN, Terjesen BF, Barr Y,
Conceicao LEC. 2003. The supply of amino acids during early feeding stages of marine fish larvae: a
review of recent findings. Aquaculture 227, 147-164.
Sakaguchi M, Murata M. 1987. Taurine content in fish and shellfish. Bulletin of the Research Institute for
Food Science, Kyoto University 50: 23-26. (in Japanese)
Satake M, Chiba Y, Makuta M, Fujita T, Kohama Y, Mimura T. 1987. Studies on pharmacological activities of
D-cysteinoic acid. Yakugaku Zasshi 107: 917-919.
Seikai T, Takeuchi T, Park GS. 1997. Comparison of growth, feed efficiency, and chemical composition of
juvenile flounder fed live mysids and formula feed under laboratory conditions. Fish. Sci. 63:
520-526.
Shiraita T, Kado Y, Matubara H. 2012. Maintenance of freshness of bluefin tuna (Thunnus tynnus). Bulletin of
Food Research Institute of Aomori Prefectural Industral Technology Center, 3, 21-24 (in Japanese).
Suyama M, Hirano T, Sato K, Fukuda H. 1979. Nitrogenous consituents of meat extract of freshwater softshell
turtle. Nippon Suisan Gakkaishi 45; 595-599. (in Japanese with English abstract)
Takagi S, Murata H, Goto T, Hatate H, Endo M, Yamashita H, Miyatake H, Ukawa M. 2011. Role of taurine
deficiency in inducing green liver syndrome and effect of dietary taurine supplementation in
improving growth in juvenile red sea bream Pagrus major fed non-fishmeal diets based on soy protein
concentrate. Fish. Sci. 77, 235-244.
Takahashi T, Amano T, Takeuchi T. 2005. Establishment of direct enrichment method of taurine to rotifer.
Aquaculture Science 53: 121–126.
Haga, Y. et al., 2017.Taurine synthesis in teleosts-importance of cysteamine pathway. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G.,
Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, Nuevo León, México, pp. 264-283. ISBN 978-607-27-0822-8.
Takeuchi T. 2014. Progress on larval and juvenile nutrition to improve the quality and health of seawater fish: a
review. Fisheries Science 80: 389–403.
Takeuchi T, Park G-S, Seikai T, Yokoyama M. 2001. Taurine content in Japanese founder Paralichthys
olivaceus T. & S. and red sea bream Pagrus major T. & S. during the period of seed production.
Aquaculture Research 32 (S1), 244-248.
Ueki I, Roman HB, Valli A, Fieselmann K, Lam J, Peters R, Hirschberger LL, Stipanuk ML. 2011. Knockout of
the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and
an increased catabolism of cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab 301:
E668–E684.
Warskulat U, Heller-Stilb B, Oermann E, Zilles K, Haas H, Lang F, Häussinger D.2007. Phenotype of the
taurine transporter knockout mouse. Methods Enzymol. 428:439-58.
Wang Q, Gen H, Wang X, Mai K, Xu W, Zhou H. 2014. Dietary sulfur amino acid modulations of taurine
biosynthesis in juvenile turbot (Psetta maxima). Aquaculture 422–423: 141–145.
Wang X, He G, Mai K, Xu W, Zhou H. 2016. Differential regulation of taurine biosynthesis in rainbow trout and
Japanese flounder. Scientific Reports 6, 21231.
Winge I, Teigen K, Fossbakk A, Mahootchi E, Kleppe R, Sköldberg F, Kämpe O, Haavik J. 2015. Mammalian
CSAD and GADL1 have distinct biochemical properties and patterns of brain expression. Neurochem.
Int. 90: 173-184.
Xu Y, Xie Y, Shao X, Ni Z, Mou S. 2015. L-FABP: A novel biomarker of kidney disease. Clin Chim Acta. 2015
May 20;445:85-90
Yamamoto T, Unuma T, Akiyama T. 2000. The influence of dietary protein and lipid levels on tissue free amino
acid levels of fingerling rainbow trout (Oncorhynchus mykiss). Aquaculture 182: 353-372.
Haga, Y. et al., 2017.Taurine synthesis in teleosts-importance of cysteamine pathway. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G.,
Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, Nuevo León, México, pp. 264-283. ISBN 978-607-27-0822-8.
Yeh YH, Hwang DF .2001. High-performance liquid chromatographic determination for bile components in
fish, chicken and duck. J Chromatogr B Biomed Sci Appl 751: 1–8.
Yoneda T, Yoshimura K. 1965. Isolatin of D-cysteinolic acid from a starfish Asteria Pectinifera. Nippon Suisan
Gakkaishi 31: 1045.

Citas

Agudo N. (2006) Sandfish Hatchery Techniques. Australian Centre for International Agricultural Research
(ACIAR), the Secretariat of the Pacific Community (SPC) and the WorldFish Center. Australia.
Ahearn, G.A. (1968). A comparative study of P32 uptake by whole animals and isolated body regions of the
sea cucumber Holothuria atra. The Biological Bulletin 134, 367-381.
Al Rashdi K. A., Eeckhaut I. & Claereboudt M. R. (2012) A manual on hatchery of sea cucumber Holothuria
scabra in the Sultanate of Oman. Ministry of Agriculture and Fisheries Wealth Directorate General of
Fisheries Research Aquaculture Centre, Muscat, Sultanate of Oman. 27 pp.
Asha P. S. & Muthiah P. (2002) Spawning and larval rearing of sea cucumber Holothuria (Theelothuria)
Spinifera Theel. SPC Beche-de-mer Information Bulletin 16, 11-15.
Asha P. S. & Muthiah P. (2006) Effects of single and combined microalgae on larval growth, development
and survival of the commercial sea cucumber Holothuria spinifera Theel. Aquaculture Research 37,
113-118.
Asha P. S. (2004) Effect of feed concentrations on larval growth, survival and development of Holothuria
(Theelothuria) spinifera Theel. Journal of the Marine Biological Association of India 46(1), 80-86.
Bai Y., Zhang L., Xia S., Liu S., Ru X., Xu Q., Zhang T. & Yang H. (2016) Effects of dietary protein levels
on the growth, energy budget, and physiological and immunological performance of green, white and
purple color morphs of sea cucumber, Apostichopus japonicus. Aquaculture 450, 375–382.
Battaglene S. C. (1999) Culture of tropical sea cucumbers for stock restoration and enhancement. The
ICLARM Quarterly 22(4), 4-11.
Battaglene S.B. & Seymour J.E. (1998) Detachment and grading of the tropical sea cucumber sandfish,
Holothuria scabra, juveniles from settlement substrates. Aquaculture 159, 263-274.
Battaglene S.C., Seymour J.E. & Ramofafia C. (1999). Survival and growth of cultured juvenile sea
cucumbers, Holothuria scabra. Aquaculture 178, 293-322.
Brothers, C.J., Lee, R.W. & Nestler, J.R. (2015). The uptake of dissolved organic material by the sea
cucumber Parastichopus californicus (Stimpson) and its potential role in visceral regeneration. Journal
of Experimental Marine Biology and Ecology 469, 69-75.
Cameron J.L. & Fankboner P. V. (1989). Reproductive biology of the commercial sea cucumber
Parastichopus californicus (Stimpson) (Echinodermata: Holothuroidea). II. Observations on the ecology
of development, recruitment, and the juvenile life stage. Journal of Experimental Marine Biology and
Ecology 127(1), 43-67.
146
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Chen C. P., Hsu H. W. & Deng D. C. (1991) Comparison of larval development and growth of the sea
cucumber Actinopyga echinites: ovary-induced ova and DTT-induced ova. Marine Biology 109, 453-
457.
Chen C.P., Hsu H.W. & Deng D.C. (1991) Comparison of larval development and growth of the sea
cucumber Actinopyga echinites: ovary-induced ova and DTT-induced ova. Marine Biology 109, 453-
457.
Chen J. (2003) Overview of sea cucumber farming and sea ranching practices in China. SPC Beche-de-mer
Information Bulletin 18, 18-23.
Chia F. S. (1977) Perspectives: settlement and metamorphosis of marine invertebrate larvae. In: Settlement
and Metamorphosis of Marine Invertebrate Larvae (ed. by F. S. Chia & M. E. Rice), pp. 283-285.
Elsevier.
Chopin T., Cooper J.A., Reid G., Cross S. & Moore C. (2012) Open-water integrated multi-trophic
aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive
aquaculture. Reviews in Aquaculture 4(4), 209-220.
Conapesca (2017) Base de Datos de Producción, Anuario 2005 a 2014. [online] Disponible en:
http://www.gob.mx/conapesca/documentos/anuario-estadistico-de-acuacultura-y-pesca [Accesado 5
May 2017].
Dabbagh A.-R., Sedaghat M. R., Rameshi H. & Kamrani, E. (2011) Breeding and larval rearing of the sea
cucumber Holothuria leucospilota Brandt (Holothuria vegabunda Selenka) from the northern Persial
Gulf, Iran. SPC Beche-de-mer Information Bulletin 31, 35-38.
Duy N. D. Q., Francis D. S. & Southgate P. C. (2017) The nutritional value of live and concentrated microalgae
for early juveniles of sandfish, Holothuria scabra. Aquaculture 473, 97-104.
Duy N.D.Q., Francis D.S., Pirozzi I. & Southgate P.C. (2016) Use of micro-algae concentrates for hatchery
culture of sandfish, Holothuria scabra. Aquaculture 464, 145-152.
Fabinyi M. & Liu N. (2014) Seafood banquets in Beijing: consumer perspectives and implications for
environmental sustainability. Conservation and Society 12(2), 218–228.
FAO (2017) Stichopus japonicus (Selenka, 1867). [online] FAO, Fisheries and Aquaculture Resoures.
Disponible en: http://www.fao.org/fishery/culturedspecies/Stichopus_japonicus/en/ [Accesed 8 May
2017].
147
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Fontaine, A. & Chia, F. (1968). Echinoderms: an autoradiographic study of assimilation of dissolved organic
molecules. Science 161, 1153-1155.
Gao Q. F., Wang Y., Dong S., Sun Z. & Wang F. (2011) Absorption of different food sources by sea
cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea): Evidence from carbon
stable isotope. Aquaculture 319(1–2), 272–276.
Giraspy D.A.B. & Ivy G. (2008) The influence of commercial diets on growth and survival in the
commercially important sea cucumber Holothuria scabra var. versicolor (Conand, 1986)
(Echinodermata: Holothuroidea). Beche-de-Mer Information Bulletin 28(28), 46–52.
Granada L., Sousa N., Lopes S. & Lemos M.F.L. (2016) Is integrated multitrophic aquaculture the solution to
the sectors’ major challenges? – a review. Reviews in Aquaculture 8, 283-300.
Guisado C., Carrasco S.A., Díaz-Guisado D., Maltrain R. & Rojas H. (2012) Embryonic development, larval
morphology and juvenile growth of the sea cucumber Athyonidium chilensis (Holothuroidea:
Dendrochirotida). Revista de Biología Marina y Oceanografía 47, 65-73.
Guzmán H.M., Guevara C.A. & Hernández L.C. (2003) Reproductive cycle of two commercial species of sea
cucumber (Echinodermata: Holothuroidea) from Caribbean Panama. Marine Biology 142, 271-279.
Hamel J.-F., Conand C., Pawson D.L. & Mercier A. (2001) The sea cucumber Holothuria scabra
(Holothuroidea: Echinodermata): Its biology and exploitation as beche-de-mer. Advances in Marine
Biology 41, 129-223.
Hamel J.-F., Hidalgo R.Y. & Mercier A. (2003) Larval development and juvenile growth of the Galapagos
sea cucumber Isostichopus fuscus. SPC Beche-de-mer Information Bulletin 18, 3-8.
Han Q., Keesing J. & Liu D. (2016) A review of sea cucumber aquaculture, ranching, and stock enhancement
in China. Reviews in Fisheries Science & Aquaculture 24(4), 326-341.
Hart M.E. & Strathmann R.R. (1995) Mechanisms and rates of suspension feeding. In; Ecology of Marine
Invertebrate Larvae (ed. by L. McEdward), pp. 193-221. CRC Press.
Hu C., Xu Y., Wen J., Zhang L., Fan S. & Su T. (2010) Larval development and juvenile growth of the sea
cucumber Stichopus sp. (Curry fish). Aquaculture 300, 73-79.
INAPESCA (2012) Carta Nacional Pesquera – Actualización. Diario Oficial de la Federación, 2ª Sección,
agosto 24, 2012.
Ito S. & Kitamura H. (1997) Induction of larval metamorphosis in the sea cucumber Stichopus japonicus by
periphytic diatoms. Hydrobiologia 358, 281-284.
148
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Ito S. & Kitamura H. (1998) Technical development in seed production of the Japanese sea cucumber,
Stichopus japonicus. SPC Beche-de-mer Information Bulletin 10, 24-28.
IUCN (2017-1) The IUCN Red List of Threatened Species. [online] Disponible en:
http://www.iucnredlist.org/details/180373/0 [Accesed 5 May 2015].
Ivy G. & Giraspy D.A.B. (2006) Development of large-scale hatchery production techniques for the
commercially important sea cucumber Holothuria scabra var. versicolor (Conand, 1986) in Queensland,
Australia. SPC Beche-de-mer Information Bulletin 24, 28-34.
Jaeckle, W.B., Strathmann, R.R. (2013). The anus as a second mouth: anal suspension feeding by an oral
deposit-feeding sea cucumber. Invertebrate Biology 132, 62-68.
James D.B. (2004) Captive breeding of the sea cucumber, Holothuria scabra, from India. In: Advances in Sea
Cucumber Aquaculture and Management, (ed. by A. Lovatelli, C. Conand, S. Purcell, S. Uthicke, J.-F.
Hamel & A. Mercier), pp. 385-395. Food and Agriculture Organization of the United Nations.
James D.B., Gandhi A.D., Palaniswamy N. & Rodrigo J.S. (1994) Hatchery techniques and culture of the seacucumber
Holothuria scabra. Central Marine Fisheries Research Institute. India.
James D.B., Rajapandian M.E., Gopinathan C.P. & Baskar B.K. (1994) Breakthrough in induced breeding
and rearing of the larvae and juveniles of Holothuria (Metriatyla) scabra Jaeger at Tuticorin. Bulletin of
The Central Marine Fisheries Research Institute 46, 66-70.
Jobling M. (2016) Fish nutrition research: past, present and future. Aquaculture International 24(3), 767-786.
Jones, I.D. (1975). Effect of processing by fermentation of nutrients. In: R.S. Harris & E. Karmas (eds),
Nutritional Evaluation of Food Processing, p. 324. Avi Publishing Co. Inc, Westport, Connecticut.
Knauer J. (2011) Growth and survival of larval sandfish, Holothuria scabra (Echinodermata: Holothuroidea),
fed different microalgae. Journal of the World Aquaculture Society 42, 880-887.
Ko S.H., Go S., Okorie O.E., Kim Y.C., Lee S., Yoo G.Y. & Bai S.C. (2009) Preliminary study of the dietary
a-tocopherol requirement in sea cucumber, Apostichopus japonicus. Journal of the World Aquaculture
Society 40(5), 659–666.
Kumara P.A.D.A., Jayanatha J.S., Pushpakumara J., Bandara W. & Dissanayake D.C.T. (2013) Artificial
breeding and larval rearing of three tropical sea cucumber species - Holothuria scabra,
Pseudocolochirus violaceus and Colochirus quadrangularis – in Sri Lanka. SPC Beche-de-mer
Information Bulletin 33, 30-37.
Lacalli T.C. & West J.E. (2000) The auricularia-to-doliolaria transformation in two aspidochirote
holothurians, Holothuria Mexicana and Stichopus californicus. Invertebrate Biology 119(4), 421-432.
149
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Laxminarayana A. (2005) Induced spawning and larval rearing of the sea cucumbers, Bohadschia marmorata
and Holothuria atra in Mauritius. SPC Beche-de-mer Information Bulletin 22, 48-52.
Levin L.A. & Bridges T.S. (1995) Pattern and diversity in reproduction and development. In: Ecology of
Marine Invertebrate Larvae (ed. by L. McEdward), pp. 1-48. CRC Press.
Li L., Li Q. & Kong L. (2010) The effect of different substrates on larvae settlement in sea cucumber,
Apostichopus japonicus Selenka. Journal of the World Aquaculture Society 41, 123-130.
Liao M., Ren T., Chen W., Jiang Z., Yang H., & Han Y. (2015) Optimum level of dietary n-3 highly
unsaturated fatty acids for juvenile sea cucumber, Apostichopus japonicus. Journal of the World
Aquaculture Society 46(6), 642–649.
Liao M., Ren T., He L., Jiang Z. & Han Y. (2014) Optimum dietary protein level for growth and coelomic
fluid non-specific immune enzymes of sea cucumber Apostichopus japonicus juvenile. Aquaculture
Nutrition 20, 443–450.
Liao M.-L., Ren T.-J., Chen W., Han Y.-Z., Liu C.-M., Jiang Z.-Q. & Wang F.-Q. (2017) Effects of dietary
lipid level on growth performance, body composition and digestive enzymes activity of juvenile sea
cucumber, Apostichopus japonicus. Aquaculture Research 48, 92–101.
Liu, Y., Dong, S., Tian, X., Wang, F., Gao, Q. (2009). Effects of dietary sea mud and yellow soil on growth
and energy budget of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture 286, 266-270.
Liu G., Sun, J. & Liu S. (2015) From fisheries toward aquaculture. In: The Sea Cucumber Apostichopus
japonicus: History, Biology and Aquaculture (ed. by H. Yang, J.-F. Hamel & A. Mercier), pp. 25-35.
Academic Press, London
Liu G., Yang H. & Liu S. (2010) Effects of rearing temperature and density on growth, survival and
development of sea cucumber larvae, Apostichpus japonicus (Selenka). Chinese Journal of Oceanology
and Limnology 28(4), 842-848.
Liu Y., Dong S., Tian X., Wang F. & Gao Q. (2010a) The effect of different macroalgae on the growth of sea
cucumbers (Apostichopus japonicus Selenka). Aquaculture Research. 41(11), e881–e885.
Manahan D. T. (1990) Adaptations by invertebrate larvae for nutrient acquisition from seawater. American
Zoologist 30, 147-160.
Martínez-Milián G. & Olvera-Novoa M.A. (2016) Evaluation of potential feed ingredients for the juvenile
four-sided sea cucumber, Isostichopus badionotus. Journal of the World Aquaculture Society 47(5),
712–719.
150
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Matsuura H., Yazaki I. & Okino T. (2009) Induction of larval metamorphosis in the sea cucumber
Apostichopus japonicus by neurotransmitters. Chemistry and Biochemistry 75, 777-783.
Mazlan N. & Hashim R. (2015) Spawning induction and larval rearing of the sea cucumber Holothuria
scabra in Malaysia. SPC Beche-de-mer Information Bulletin 35, 32-36.
Mercier A. & Hamel J.-F. (2013) Sea cucumber aquaculture: hatchery production, juvenile growth and
industry challenges. In: Advances in Aquaculture Hatchery Technology. (ed. by G. Allan & G. Burnell),
pp. 431-454. Woodhead Publishing Ltd, Cambridge.
Mercier A., Battaglene S. C. & Hamel J.-F. (2000) Settlement preferences and early migration of the tropical
sea cucumber Holothuria scabra. Journal of Experimental Marine Biology and Ecology 249, 89-110.
Mercier A., Ycaza H. R. & Hamel J.-F. (2004) Aquaculture of the Galapagos sea cucumber, Isostichopus
fuscus. In: Advances in Sea Cucumber Aquaculture and Management. (ed. by A. Lovatelli, C. Conand,
S. Purcell, S. Uthicke, J.-F. Hamel & A. Mercier), pp. 347-357. Food and Agriculture Organization of
the United Nations, Rome.
Morgan A.D. (2001) The effect of food availability on early growth development and survival of the sea
cucumber Holothuria scabra. SPC Beche-de-mer Information Bulletin 14, 6-12.
Morgan A.D. (2002) Hatchery research sheds light on problems in sea cucumber aquaculture. SPC Beche-demer
Information Bulletin 17, 36-37.
Morgan A.D. (2008) The effect of food availability on phenotypic plasticity in larvae of the temperate sea
cucumber Australostichopus mollis. Journal of Experimental Marine Biology and Ecology 363, 89-95.
Morgan A.D. (2009) assessment of egg and larval quality during hatchery production of the temperate sea
cucumber, Australostichpous mollis (Levin). Journal of the World Aquaculture Society 40(5), 629-62.
Okorie O.E., Ko S.H., Go S., Lee S., Bae J.Y., Han K. & Bai S.C. (2008) Preliminary study of the optimum
dietary ascorbic acid level in sea cucumber, Apostichopus japonicus (Selenka). Journal of the World
Aquaculture Society 39(6), 758–765.
Orozco-Almeda Z.G., Sumbing J.G., Lebata-Ramos M.J.H., Watanabe S. (2014) Apparent digestibility
coefficient of nutrients from shrimp, mussel, diatom and seaweed by juvenile Holothuria scabra Jaeger.
Aquaculture Research 45, 1153-1163.
Paltzat D.L., Pearce C.M., Barnes P.A. & McKinley R.S. (2008) Growth and production of California sea
cucumbers (Parastichopus californicus Stimpson) co-cultured with suspended Pacific oysters
(Crassostrea gigas Thunberg). Aquaculture 275(1–4), 124–137.
151
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Pitt R. & Duy N.D.Q. (2004) Breeding and rearing of the sea cucumber Holothuria scabra in Viet Nam. In:
Advances in Sea Cucumber Aquaculture and Management. (ed. by A. Lovatelli, C. Conand, S. Purcell,
S. Uthicke, J.-F. Hamel & A. Mercier), pp. 333-346. Food and Agriculture Organization of the United
Nations, Rome.
Pitt R. (2001) Review of sandfish breeding and rearing methods. SPC Beche-de-mer Information Bulletin 14,
14-21.
Poot-Salazar A., Hernández-Flores A. & Ardisson P.-L. (2015) Indicadores de sostenibilidad para la
evaluación de las pesquerías de pepino de mar en la península de Yucatán, México. Ciencia Pesquera
23(2), 11-24.
Purcell S. W., Ngaluafe P., Foale S.J., Cocks N., Cullis B. R. & Lalavanua W. (2016) Multiple factors affect
socioeconomics and wellbeing of artisanal sea cucumber fishers. PLoS ONE 11(12), 1–20.
Purcell S.W., Hair C.A. & Mills D.J. (2012) Sea cucumber culture, farming and sea ranching in the tropics:
Progress, problems and opportunities. Aquaculture 368-369, 68-81.
Purcell S.W., Polidoro B.A., Hamel J.-F., Gamboa R.U. & Mercier A. (2014) The cost of being valuable:
predictors of extinction risk in marine invertebrates exploited as luxury seafood. Proceedings of the
Royal Society B 281, 1–9.
Qi Z., Wang J., Mao Y., Liu H. & Fang J. (2013) Feasibility of offshore co-culture of abalone, Haliotis discus
hannai Ino, and sea cucumber, Apostichopus japonicus, in a temperate zone. Journal of the World
Aquaculture Society 44(4), 565–573.
Qiu T., Zhang T., Hamel J.-F. & Mercier A. (2015) Development, settlement, and post-settlement growth. En:
The Sea Cucumber Apostichopus japonicus: History, Biology and Aquaculture. (Ed. by H. Yang, J.-F.
Hamel & A. Mercier), pp. 111-132. Elsevier.
Ramofafia C., Byrne M. & Battaglene S. C. (2003) Development of three commercial sea cucumber
Holothuria scabra, H. fuscogilva and Actinopyga mauritiana: Larval structure and growth. Marine and
Freshwater Research 54(5), 657-667.
Ramofafia C., Foyle T. P. & Bell J.D. (1997) Growth of juvenile Actinopyga mauritiana (Holothuroidea) in
captivity. Aquaculture 152(1–4), 119–128.
Ramofafia C., Gervis M. & Bell J. (1995) Spawning and early larval rearing of Holothuria atra. SPC Bechede-
mer Information Bulletin 7, 3-6.
152
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Ren T. J., Liao M.L., Han Y.Z., Li Y.L., Jiang Z.Q. & Wang F.Q. (2016) Effectiveness of l-ascorbyl-2-
polyphosphate as an ascorbic acid source for sea cucumber, Apostichopus japonicus. Aquaculture
Research 47(8), 2594–2606.
Ren Y., Liu W., Dong S. & Pearce C.M. (2016) Effects of mono-species and bi-species microalgal diets on
the growth, survival and metamorphosis of auricularia larvae of the California sea cucumber,
Parastichopus californicus (Stimpson, 1857). Aquaculture Nutrition 22(2), 304-314.
Renbo W. & Yuan C. (2004) Breeding and culture of the sea cucumber Apostichopus japonicus, Liao. In:
Advances in Sea Cucumber Aquaculture and Management. (ed. by A. Lovatelli, C. Conand, S. Purcell,
S. Uthicke, J.-F. Hamel & A. Mercier), pp. 277-286. Food and Agriculture Organization of the United
Nations, Rome.
Riquelme C.E. & Avendaño-Herrera R.E. (2003) Interacción bacteria-microalga en el ambiente marino y uso
potencial en acuicultura. Revista Chilena de Historia Natural 76, 725-736.
Sambrano A., Diaz H. & Conde J.E. (1990) Caracterización de la ingesta en Isostichopus badionotus
(Selenka) y Holothuria mexicana Ludwig (Echinodermata: Holothuroidea). Caribbean Journal of
Science 26, 45–51.
Seo J. Y., Shin I. S. & Lee S. M. (2011a) Effect of dietary inclusion of various plant ingredients as an
alternative for Sargassum thunbergii on growth and body composition of juvenile sea cucumber
Apostichopus japonicus. Aquaculture Nutrition 17(5), 549–556.
Seo J.Y., Shin I.S. & Lee S.M. (2011b) Effect of various protein sources in formulated diets on the growth
and body composition of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture
Research 42(4), 623–627.
Seo J.-Y.Y. & Lee S.-M.M. (2011) Optimum dietary protein and lipid levels for growth of juvenile sea
cucumber Apostichopus japonicus. Aquaculture Nutrition 17, e56–e61.
Sewell M.A. & McEuen F.S. (2006) Phylum Echinodermata: Holothuroidea, In: Atlas of Marine Invertebrate
Larvae. (Ed. by C. M. Young., M. A. Sewell & M. E. Rice), pp. 513-518. Academia Press. España.
Slater, M.J., Carton, A.G. (2007). Survivorship and growth of the sea cucumber Australostichopus (Stichopus)
mollis (Hutton 1872) in polyculture trials with green-lipped mussel farms. Aquaculture 272, 389-398.
Slater M.J. & Jeffs A.G. (2010) Do benthic sediment characteristics explain the distribution of juveniles of the
deposit-feeding sea cucumber Australostichopus mollis? Journal of Sea Research 64, 241-249.
Slater M.J., Jeffs A.G. & Carton A.G. (2009) The use of the waste from green-lipped mussels as a food source
for juvenile sea cucumber, Australostichopus mollis. Aquaculture 292(3–4), 219–224.
153
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Slater M.J., Lassudrie M. & Jeffs A.G. (2011) Method for determining apparent digestibility of carbohydrate
and protein sources for artificial diets for juvenile sea cucumber, Australostichopus mollis. Journal of
the World Aquaculture Society 42(5), 714–725.
Smiley S. (1986) Metamorphosis of Stichopus californicus (Echinodermata: Holothuroidea) and its
phylogenetic implications. The Biological Bulletin 171, 611-631.
Sun X. & Li Q. (2014) Effects of delayed first feeding on larval growth, survival and development of the sea
cucumber Apostichopus japonicus (Holothuroidea). Aquaculture Research 45, 278-288.
Sun Y., Wen Z., Li X., Meng N., Mi R., Li Y., Li S. (2012) Dietary supplement of fructooligosaccharides and
Bacillus subtilis enhances the growth rate and disease resistance of the sea cucumber Apostichopus
japonicus (Selenka). Aquaculture Research 43, 1328-1334.
Vergara W. & Rodríguez A. (2015) Histología del tubo digestivo de tres especies de pepino de mar
Isostichopus badionotus, Isostichopus sp. y Stichopus hermanni (Aspidochirotida: Stichopodidae).
Revista de Biología Tropical 63(4), 1021-1033.
Wang J., Xu Y., Li X., Li J., Bao P., Che J., Li S. & Jin L. (2015) Vitamin E requirement of sea cucumber
(Apostichopus japonicus) and its’ effects on nonspecific immune responses. Aquaculture Research
46(7), 1628–1637.
Xia B., Gao Q.-F., Wang J., Li P., Zhang L. & Zhang Z. (2015a) Effects of dietary carbohydrate level on
growth, biochemical composition and glucose metabolism of juvenile sea cucumber Apostichopus
japonicus (Selenka). Aquaculture 448, 63–70.
Xia B., Wang J., Gao Q.-F., Sun Y., Zhang L., Ma J. & Liu X. (2015b) The nutritional contributions of
dietary protein sources to tissue growth and metabolism of sea cucumber Apostichopus japonicus
(Selenka): Evidence from nitrogen stable isotope analysis. Aquaculture 435, 237-244.
Xia S., Yang H., Li Y., Liu S., Xu Q. & Rajkumar M. (2013a) Effects of food processing method on
digestibility and energy budget of Apostichopus japonicus. Aquaculture 384–387, 128–133.
Xia S., Yang H., Li Y., Liu S., Zhou Y. & Zhang L. (2012a) Effects of different seaweed diets on growth,
digestibility, and ammonia-nitrogen production of the sea cucumber Apostichopus japonicus (Selenka).
Aquaculture 338-341, 304-308.
Xia, S.-D, Zhao, P., Chen, K., Li, Y., Liu, S., Zhang, L., Yang, H. (2012b). Feeding preferences of the sea
cucumber Apostichopus japonicus (Selenka) on various seaweed diets. Aquaculture 344-349, 205–209.
154
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Xia, S.D., Yang, H.S., Li, Y., Liu, S.L., Zhang, L.B., Chen, K. & Zou, A.G. (2013b). Effects of differently
processed diets on growth, immunity and water quality of the sea cucumber, Apostichopus japonicus
(Selenka, 1867). Aquaculture Nutrition 19(3), 382–389.
Xilin S. (2004) The progress and prospects of studies on artificial propagation and culture of the sea
cucumber, Apostichopus japonicus. In: Sea Cucumber Aquaculture: Hatchery production, Juvenile
growth and Industry Challenges. (ed. by A. Mercier & J.-F. Hamel), pp. 431-454. Woodhead Publishing
Ltd, Cambridge.
Xu Q., Hamel J.-F. & Mercier A. (2016) Feeding, digestion, nutritional physiology, and bioenergetics. In: The
Sea Cucumber Apostichopus japonicus: History, Biology and Aquaculture (ed. by H. Yang. J.-F. Hamel
& A. Mercier), pp. 153-176. Academic Press, London.
Yan F., Tian X., Dong S., Fang Z. & Yang G. (2014) Growth performance, immune response, and disease
resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus fed a
supplementary diet of the potential probiotic Paracoccus marcusii DB11. Aquaculture 420-421, 105-
111.
Yanagisawa T. (1998) Aspects of the biology and culture of the sea cucumber. In: Tropical Mariculture (ed.
by. S. de Silva). Academic Press.
Yasoda H.N., Chi Z. & Ling Z.K. (2006) Probiotics and sea cucumber farming. Beche-de-Mer information
Bulletin, 45-48.
Ye W.-J., Tan X.-Y., Chen Y.-D. & Luo Z. (2009) Effects of dietary protein to carbohydrate ratios on growth
and body composition of juvenile yellow catfish, Pelteobagrus fulvidraco (Siluriformes, Bagridae,
Pelteobagrus). Aquaculture Research 40, 1410-1418.
Yu H. B., Gao Q. F., Dong S. L., Wen B., Hou Y. R. & Ning L. G. (2015) Utilization of corn meal and
extruded soybean meal by sea cucumber Apostichopus japonicus (Selenka): Insights from carbon stable
isotope analysis. Aquaculture 435, 106–110.
Yuan, X., Yang, H., Zhou, Y., Mao, Y.Xu, X., Zhang, T. & Liu, Y. (2006). The influence of diets containing
dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber
Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture 256(1–4), 457–467.
Zacarias-Soto M. & Olvera-Novoa M.A. (2015) Effect of different diets on body biochemical composition of
the four-sided sea cucumber, Isostichopus badionotus, under culture conditions. Journal of the World
Aquaculture Society 46(1), 45–52.
155
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.

Descargas

Cómo citar

Haga, Y., Mojena Gonzales, M., Kondo, H., Hirono, I., & Satoh, S. (2017). Taurine synthesis in teleost-importance of cysteamine pathway. Avances En Nutrición Acuicola. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/16

Artículos más leídos del mismo autor/a

Artículos similares

También puede {advancedSearchLink} para este artículo.