Taurine synthesis in teleost-importance of cysteamine pathway
Palabras clave:
Taurine, Synthesis, TeleostsResumen
Taurine plays various roles in animals such as growth promotion, osmoregulation, bile acid conjugation,
neurotransmission, cardiac muscle contraction, antioxidant activity, and reproduction. Taurine is one of the
essential nutrients for marine fish larvae and in fishes which lack endogenous taurine production. Taurine is
synthesized from methionine via cysteine. Cysteine is converted to cysteine sulfinic acid by activity of cysteine
dioxygenase (CDO) and cysteine sulfinic acid is converted into hypotaurine by cysteine sulfinic acid
decarboxylase (CSD) in CSD pathway which is considered to be a major taurine production pathway in fish.
Hypotaurine is finally converted into taurine by auto-oxidation. In addition to CSD pathway, there is two other
taurine synthetic pathways are know: cysteic acid pathway where cysteine is oxidized into cysteic acid, and it is
directly converted into taurine by cysteic acid decarboxylase (CAD) activity and cysteamine pathway where
cysteine is converted into cysteamine and it is converted into hypotaurine by cysteamine dioxygenase (ADO).
However, detail on taurine production by these two pathways is not understood.
Common carp is widely cultured in the world and world production of cypriniforms is highest among food fish
species. Rainbow trout is known to have sufficient CSD activity to produce taurine via methionine. In contrast,
it was reported that CSD activity in common carp is about half of that reported in rainbow trout. However,
common carp did not show growth retardation when it was fed taurine deficient diet. These observations led
265
Haga, Y. et al., 2017.Taurine synthesis in teleosts-importance of cysteamine pathway. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G.,
Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, Nuevo León, México, pp. 264-283. ISBN 978-607-27-0822-8.
hypothesis that common carp is able to produce sufficient amount of taurine beside the CSD pathway. The
purpose of the present study is to investigate effect of dietary supplementation of cysteine, cysteamine,
methionine, and taurine on the growth, sulfur amino acid content, and gene expression of taurine synthesizing
enzymes.
Eight different diets supplemented with taurine, methionine, cysteine, and cysteamine were fed to the juvenile
common carps for 30 days. For control, a diet without supplying sulfur amino acid was fed. Feeding diets
supplemented sulfur amino acid resulted in better survival, growth, feed conversion ratio, and protein efficiency
ratio except treatments supplemented with cysteamine. It was observed that the supplementation of dietary
cysteamine caused growth retardation, myopathy, and body deformity in common carp. All sulfur amino acids
increased taurine deposition in the carcass and 1.5% cysteamine increased taurine deposition by 1.8 and 5.5
times higher than those of the methionine and cysteine treatments. CDO was tended to be down-regulated by
cysteine and low dose of taurine but up-regulated by a high dose of cysteamine. It was observed that CSD was
down-regulated by sulfur amino acids. ADO was down-regulated by methionine, cysteine and low dose of
taurine but up-regulated by cysteamine.
These results suggest that CSD pathway plays a role in taurine synthesis and cysteamine pathway is another
major taurine synthesizing pathway in common carp.
Descargas
Citas
(ACIAR), the Secretariat of the Pacific Community (SPC) and the WorldFish Center. Australia.
Ahearn, G.A. (1968). A comparative study of P32 uptake by whole animals and isolated body regions of the
sea cucumber Holothuria atra. The Biological Bulletin 134, 367-381.
Al Rashdi K. A., Eeckhaut I. & Claereboudt M. R. (2012) A manual on hatchery of sea cucumber Holothuria
scabra in the Sultanate of Oman. Ministry of Agriculture and Fisheries Wealth Directorate General of
Fisheries Research Aquaculture Centre, Muscat, Sultanate of Oman. 27 pp.
Asha P. S. & Muthiah P. (2002) Spawning and larval rearing of sea cucumber Holothuria (Theelothuria)
Spinifera Theel. SPC Beche-de-mer Information Bulletin 16, 11-15.
Asha P. S. & Muthiah P. (2006) Effects of single and combined microalgae on larval growth, development
and survival of the commercial sea cucumber Holothuria spinifera Theel. Aquaculture Research 37,
113-118.
Asha P. S. (2004) Effect of feed concentrations on larval growth, survival and development of Holothuria
(Theelothuria) spinifera Theel. Journal of the Marine Biological Association of India 46(1), 80-86.
Bai Y., Zhang L., Xia S., Liu S., Ru X., Xu Q., Zhang T. & Yang H. (2016) Effects of dietary protein levels
on the growth, energy budget, and physiological and immunological performance of green, white and
purple color morphs of sea cucumber, Apostichopus japonicus. Aquaculture 450, 375–382.
Battaglene S. C. (1999) Culture of tropical sea cucumbers for stock restoration and enhancement. The
ICLARM Quarterly 22(4), 4-11.
Battaglene S.B. & Seymour J.E. (1998) Detachment and grading of the tropical sea cucumber sandfish,
Holothuria scabra, juveniles from settlement substrates. Aquaculture 159, 263-274.
Battaglene S.C., Seymour J.E. & Ramofafia C. (1999). Survival and growth of cultured juvenile sea
cucumbers, Holothuria scabra. Aquaculture 178, 293-322.
Brothers, C.J., Lee, R.W. & Nestler, J.R. (2015). The uptake of dissolved organic material by the sea
cucumber Parastichopus californicus (Stimpson) and its potential role in visceral regeneration. Journal
of Experimental Marine Biology and Ecology 469, 69-75.
Cameron J.L. & Fankboner P. V. (1989). Reproductive biology of the commercial sea cucumber
Parastichopus californicus (Stimpson) (Echinodermata: Holothuroidea). II. Observations on the ecology
of development, recruitment, and the juvenile life stage. Journal of Experimental Marine Biology and
Ecology 127(1), 43-67.
146
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Chen C. P., Hsu H. W. & Deng D. C. (1991) Comparison of larval development and growth of the sea
cucumber Actinopyga echinites: ovary-induced ova and DTT-induced ova. Marine Biology 109, 453-
457.
Chen C.P., Hsu H.W. & Deng D.C. (1991) Comparison of larval development and growth of the sea
cucumber Actinopyga echinites: ovary-induced ova and DTT-induced ova. Marine Biology 109, 453-
457.
Chen J. (2003) Overview of sea cucumber farming and sea ranching practices in China. SPC Beche-de-mer
Information Bulletin 18, 18-23.
Chia F. S. (1977) Perspectives: settlement and metamorphosis of marine invertebrate larvae. In: Settlement
and Metamorphosis of Marine Invertebrate Larvae (ed. by F. S. Chia & M. E. Rice), pp. 283-285.
Elsevier.
Chopin T., Cooper J.A., Reid G., Cross S. & Moore C. (2012) Open-water integrated multi-trophic
aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive
aquaculture. Reviews in Aquaculture 4(4), 209-220.
Conapesca (2017) Base de Datos de Producción, Anuario 2005 a 2014. [online] Disponible en:
http://www.gob.mx/conapesca/documentos/anuario-estadistico-de-acuacultura-y-pesca [Accesado 5
May 2017].
Dabbagh A.-R., Sedaghat M. R., Rameshi H. & Kamrani, E. (2011) Breeding and larval rearing of the sea
cucumber Holothuria leucospilota Brandt (Holothuria vegabunda Selenka) from the northern Persial
Gulf, Iran. SPC Beche-de-mer Information Bulletin 31, 35-38.
Duy N. D. Q., Francis D. S. & Southgate P. C. (2017) The nutritional value of live and concentrated microalgae
for early juveniles of sandfish, Holothuria scabra. Aquaculture 473, 97-104.
Duy N.D.Q., Francis D.S., Pirozzi I. & Southgate P.C. (2016) Use of micro-algae concentrates for hatchery
culture of sandfish, Holothuria scabra. Aquaculture 464, 145-152.
Fabinyi M. & Liu N. (2014) Seafood banquets in Beijing: consumer perspectives and implications for
environmental sustainability. Conservation and Society 12(2), 218–228.
FAO (2017) Stichopus japonicus (Selenka, 1867). [online] FAO, Fisheries and Aquaculture Resoures.
Disponible en: http://www.fao.org/fishery/culturedspecies/Stichopus_japonicus/en/ [Accesed 8 May
2017].
147
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Fontaine, A. & Chia, F. (1968). Echinoderms: an autoradiographic study of assimilation of dissolved organic
molecules. Science 161, 1153-1155.
Gao Q. F., Wang Y., Dong S., Sun Z. & Wang F. (2011) Absorption of different food sources by sea
cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea): Evidence from carbon
stable isotope. Aquaculture 319(1–2), 272–276.
Giraspy D.A.B. & Ivy G. (2008) The influence of commercial diets on growth and survival in the
commercially important sea cucumber Holothuria scabra var. versicolor (Conand, 1986)
(Echinodermata: Holothuroidea). Beche-de-Mer Information Bulletin 28(28), 46–52.
Granada L., Sousa N., Lopes S. & Lemos M.F.L. (2016) Is integrated multitrophic aquaculture the solution to
the sectors’ major challenges? – a review. Reviews in Aquaculture 8, 283-300.
Guisado C., Carrasco S.A., Díaz-Guisado D., Maltrain R. & Rojas H. (2012) Embryonic development, larval
morphology and juvenile growth of the sea cucumber Athyonidium chilensis (Holothuroidea:
Dendrochirotida). Revista de Biología Marina y Oceanografía 47, 65-73.
Guzmán H.M., Guevara C.A. & Hernández L.C. (2003) Reproductive cycle of two commercial species of sea
cucumber (Echinodermata: Holothuroidea) from Caribbean Panama. Marine Biology 142, 271-279.
Hamel J.-F., Conand C., Pawson D.L. & Mercier A. (2001) The sea cucumber Holothuria scabra
(Holothuroidea: Echinodermata): Its biology and exploitation as beche-de-mer. Advances in Marine
Biology 41, 129-223.
Hamel J.-F., Hidalgo R.Y. & Mercier A. (2003) Larval development and juvenile growth of the Galapagos
sea cucumber Isostichopus fuscus. SPC Beche-de-mer Information Bulletin 18, 3-8.
Han Q., Keesing J. & Liu D. (2016) A review of sea cucumber aquaculture, ranching, and stock enhancement
in China. Reviews in Fisheries Science & Aquaculture 24(4), 326-341.
Hart M.E. & Strathmann R.R. (1995) Mechanisms and rates of suspension feeding. In; Ecology of Marine
Invertebrate Larvae (ed. by L. McEdward), pp. 193-221. CRC Press.
Hu C., Xu Y., Wen J., Zhang L., Fan S. & Su T. (2010) Larval development and juvenile growth of the sea
cucumber Stichopus sp. (Curry fish). Aquaculture 300, 73-79.
INAPESCA (2012) Carta Nacional Pesquera – Actualización. Diario Oficial de la Federación, 2ª Sección,
agosto 24, 2012.
Ito S. & Kitamura H. (1997) Induction of larval metamorphosis in the sea cucumber Stichopus japonicus by
periphytic diatoms. Hydrobiologia 358, 281-284.
148
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Ito S. & Kitamura H. (1998) Technical development in seed production of the Japanese sea cucumber,
Stichopus japonicus. SPC Beche-de-mer Information Bulletin 10, 24-28.
IUCN (2017-1) The IUCN Red List of Threatened Species. [online] Disponible en:
http://www.iucnredlist.org/details/180373/0 [Accesed 5 May 2015].
Ivy G. & Giraspy D.A.B. (2006) Development of large-scale hatchery production techniques for the
commercially important sea cucumber Holothuria scabra var. versicolor (Conand, 1986) in Queensland,
Australia. SPC Beche-de-mer Information Bulletin 24, 28-34.
Jaeckle, W.B., Strathmann, R.R. (2013). The anus as a second mouth: anal suspension feeding by an oral
deposit-feeding sea cucumber. Invertebrate Biology 132, 62-68.
James D.B. (2004) Captive breeding of the sea cucumber, Holothuria scabra, from India. In: Advances in Sea
Cucumber Aquaculture and Management, (ed. by A. Lovatelli, C. Conand, S. Purcell, S. Uthicke, J.-F.
Hamel & A. Mercier), pp. 385-395. Food and Agriculture Organization of the United Nations.
James D.B., Gandhi A.D., Palaniswamy N. & Rodrigo J.S. (1994) Hatchery techniques and culture of the seacucumber
Holothuria scabra. Central Marine Fisheries Research Institute. India.
James D.B., Rajapandian M.E., Gopinathan C.P. & Baskar B.K. (1994) Breakthrough in induced breeding
and rearing of the larvae and juveniles of Holothuria (Metriatyla) scabra Jaeger at Tuticorin. Bulletin of
The Central Marine Fisheries Research Institute 46, 66-70.
Jobling M. (2016) Fish nutrition research: past, present and future. Aquaculture International 24(3), 767-786.
Jones, I.D. (1975). Effect of processing by fermentation of nutrients. In: R.S. Harris & E. Karmas (eds),
Nutritional Evaluation of Food Processing, p. 324. Avi Publishing Co. Inc, Westport, Connecticut.
Knauer J. (2011) Growth and survival of larval sandfish, Holothuria scabra (Echinodermata: Holothuroidea),
fed different microalgae. Journal of the World Aquaculture Society 42, 880-887.
Ko S.H., Go S., Okorie O.E., Kim Y.C., Lee S., Yoo G.Y. & Bai S.C. (2009) Preliminary study of the dietary
a-tocopherol requirement in sea cucumber, Apostichopus japonicus. Journal of the World Aquaculture
Society 40(5), 659–666.
Kumara P.A.D.A., Jayanatha J.S., Pushpakumara J., Bandara W. & Dissanayake D.C.T. (2013) Artificial
breeding and larval rearing of three tropical sea cucumber species - Holothuria scabra,
Pseudocolochirus violaceus and Colochirus quadrangularis – in Sri Lanka. SPC Beche-de-mer
Information Bulletin 33, 30-37.
Lacalli T.C. & West J.E. (2000) The auricularia-to-doliolaria transformation in two aspidochirote
holothurians, Holothuria Mexicana and Stichopus californicus. Invertebrate Biology 119(4), 421-432.
149
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Laxminarayana A. (2005) Induced spawning and larval rearing of the sea cucumbers, Bohadschia marmorata
and Holothuria atra in Mauritius. SPC Beche-de-mer Information Bulletin 22, 48-52.
Levin L.A. & Bridges T.S. (1995) Pattern and diversity in reproduction and development. In: Ecology of
Marine Invertebrate Larvae (ed. by L. McEdward), pp. 1-48. CRC Press.
Li L., Li Q. & Kong L. (2010) The effect of different substrates on larvae settlement in sea cucumber,
Apostichopus japonicus Selenka. Journal of the World Aquaculture Society 41, 123-130.
Liao M., Ren T., Chen W., Jiang Z., Yang H., & Han Y. (2015) Optimum level of dietary n-3 highly
unsaturated fatty acids for juvenile sea cucumber, Apostichopus japonicus. Journal of the World
Aquaculture Society 46(6), 642–649.
Liao M., Ren T., He L., Jiang Z. & Han Y. (2014) Optimum dietary protein level for growth and coelomic
fluid non-specific immune enzymes of sea cucumber Apostichopus japonicus juvenile. Aquaculture
Nutrition 20, 443–450.
Liao M.-L., Ren T.-J., Chen W., Han Y.-Z., Liu C.-M., Jiang Z.-Q. & Wang F.-Q. (2017) Effects of dietary
lipid level on growth performance, body composition and digestive enzymes activity of juvenile sea
cucumber, Apostichopus japonicus. Aquaculture Research 48, 92–101.
Liu, Y., Dong, S., Tian, X., Wang, F., Gao, Q. (2009). Effects of dietary sea mud and yellow soil on growth
and energy budget of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture 286, 266-270.
Liu G., Sun, J. & Liu S. (2015) From fisheries toward aquaculture. In: The Sea Cucumber Apostichopus
japonicus: History, Biology and Aquaculture (ed. by H. Yang, J.-F. Hamel & A. Mercier), pp. 25-35.
Academic Press, London
Liu G., Yang H. & Liu S. (2010) Effects of rearing temperature and density on growth, survival and
development of sea cucumber larvae, Apostichpus japonicus (Selenka). Chinese Journal of Oceanology
and Limnology 28(4), 842-848.
Liu Y., Dong S., Tian X., Wang F. & Gao Q. (2010a) The effect of different macroalgae on the growth of sea
cucumbers (Apostichopus japonicus Selenka). Aquaculture Research. 41(11), e881–e885.
Manahan D. T. (1990) Adaptations by invertebrate larvae for nutrient acquisition from seawater. American
Zoologist 30, 147-160.
Martínez-Milián G. & Olvera-Novoa M.A. (2016) Evaluation of potential feed ingredients for the juvenile
four-sided sea cucumber, Isostichopus badionotus. Journal of the World Aquaculture Society 47(5),
712–719.
150
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Matsuura H., Yazaki I. & Okino T. (2009) Induction of larval metamorphosis in the sea cucumber
Apostichopus japonicus by neurotransmitters. Chemistry and Biochemistry 75, 777-783.
Mazlan N. & Hashim R. (2015) Spawning induction and larval rearing of the sea cucumber Holothuria
scabra in Malaysia. SPC Beche-de-mer Information Bulletin 35, 32-36.
Mercier A. & Hamel J.-F. (2013) Sea cucumber aquaculture: hatchery production, juvenile growth and
industry challenges. In: Advances in Aquaculture Hatchery Technology. (ed. by G. Allan & G. Burnell),
pp. 431-454. Woodhead Publishing Ltd, Cambridge.
Mercier A., Battaglene S. C. & Hamel J.-F. (2000) Settlement preferences and early migration of the tropical
sea cucumber Holothuria scabra. Journal of Experimental Marine Biology and Ecology 249, 89-110.
Mercier A., Ycaza H. R. & Hamel J.-F. (2004) Aquaculture of the Galapagos sea cucumber, Isostichopus
fuscus. In: Advances in Sea Cucumber Aquaculture and Management. (ed. by A. Lovatelli, C. Conand,
S. Purcell, S. Uthicke, J.-F. Hamel & A. Mercier), pp. 347-357. Food and Agriculture Organization of
the United Nations, Rome.
Morgan A.D. (2001) The effect of food availability on early growth development and survival of the sea
cucumber Holothuria scabra. SPC Beche-de-mer Information Bulletin 14, 6-12.
Morgan A.D. (2002) Hatchery research sheds light on problems in sea cucumber aquaculture. SPC Beche-demer
Information Bulletin 17, 36-37.
Morgan A.D. (2008) The effect of food availability on phenotypic plasticity in larvae of the temperate sea
cucumber Australostichopus mollis. Journal of Experimental Marine Biology and Ecology 363, 89-95.
Morgan A.D. (2009) assessment of egg and larval quality during hatchery production of the temperate sea
cucumber, Australostichpous mollis (Levin). Journal of the World Aquaculture Society 40(5), 629-62.
Okorie O.E., Ko S.H., Go S., Lee S., Bae J.Y., Han K. & Bai S.C. (2008) Preliminary study of the optimum
dietary ascorbic acid level in sea cucumber, Apostichopus japonicus (Selenka). Journal of the World
Aquaculture Society 39(6), 758–765.
Orozco-Almeda Z.G., Sumbing J.G., Lebata-Ramos M.J.H., Watanabe S. (2014) Apparent digestibility
coefficient of nutrients from shrimp, mussel, diatom and seaweed by juvenile Holothuria scabra Jaeger.
Aquaculture Research 45, 1153-1163.
Paltzat D.L., Pearce C.M., Barnes P.A. & McKinley R.S. (2008) Growth and production of California sea
cucumbers (Parastichopus californicus Stimpson) co-cultured with suspended Pacific oysters
(Crassostrea gigas Thunberg). Aquaculture 275(1–4), 124–137.
151
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Pitt R. & Duy N.D.Q. (2004) Breeding and rearing of the sea cucumber Holothuria scabra in Viet Nam. In:
Advances in Sea Cucumber Aquaculture and Management. (ed. by A. Lovatelli, C. Conand, S. Purcell,
S. Uthicke, J.-F. Hamel & A. Mercier), pp. 333-346. Food and Agriculture Organization of the United
Nations, Rome.
Pitt R. (2001) Review of sandfish breeding and rearing methods. SPC Beche-de-mer Information Bulletin 14,
14-21.
Poot-Salazar A., Hernández-Flores A. & Ardisson P.-L. (2015) Indicadores de sostenibilidad para la
evaluación de las pesquerías de pepino de mar en la península de Yucatán, México. Ciencia Pesquera
23(2), 11-24.
Purcell S. W., Ngaluafe P., Foale S.J., Cocks N., Cullis B. R. & Lalavanua W. (2016) Multiple factors affect
socioeconomics and wellbeing of artisanal sea cucumber fishers. PLoS ONE 11(12), 1–20.
Purcell S.W., Hair C.A. & Mills D.J. (2012) Sea cucumber culture, farming and sea ranching in the tropics:
Progress, problems and opportunities. Aquaculture 368-369, 68-81.
Purcell S.W., Polidoro B.A., Hamel J.-F., Gamboa R.U. & Mercier A. (2014) The cost of being valuable:
predictors of extinction risk in marine invertebrates exploited as luxury seafood. Proceedings of the
Royal Society B 281, 1–9.
Qi Z., Wang J., Mao Y., Liu H. & Fang J. (2013) Feasibility of offshore co-culture of abalone, Haliotis discus
hannai Ino, and sea cucumber, Apostichopus japonicus, in a temperate zone. Journal of the World
Aquaculture Society 44(4), 565–573.
Qiu T., Zhang T., Hamel J.-F. & Mercier A. (2015) Development, settlement, and post-settlement growth. En:
The Sea Cucumber Apostichopus japonicus: History, Biology and Aquaculture. (Ed. by H. Yang, J.-F.
Hamel & A. Mercier), pp. 111-132. Elsevier.
Ramofafia C., Byrne M. & Battaglene S. C. (2003) Development of three commercial sea cucumber
Holothuria scabra, H. fuscogilva and Actinopyga mauritiana: Larval structure and growth. Marine and
Freshwater Research 54(5), 657-667.
Ramofafia C., Foyle T. P. & Bell J.D. (1997) Growth of juvenile Actinopyga mauritiana (Holothuroidea) in
captivity. Aquaculture 152(1–4), 119–128.
Ramofafia C., Gervis M. & Bell J. (1995) Spawning and early larval rearing of Holothuria atra. SPC Bechede-
mer Information Bulletin 7, 3-6.
152
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Ren T. J., Liao M.L., Han Y.Z., Li Y.L., Jiang Z.Q. & Wang F.Q. (2016) Effectiveness of l-ascorbyl-2-
polyphosphate as an ascorbic acid source for sea cucumber, Apostichopus japonicus. Aquaculture
Research 47(8), 2594–2606.
Ren Y., Liu W., Dong S. & Pearce C.M. (2016) Effects of mono-species and bi-species microalgal diets on
the growth, survival and metamorphosis of auricularia larvae of the California sea cucumber,
Parastichopus californicus (Stimpson, 1857). Aquaculture Nutrition 22(2), 304-314.
Renbo W. & Yuan C. (2004) Breeding and culture of the sea cucumber Apostichopus japonicus, Liao. In:
Advances in Sea Cucumber Aquaculture and Management. (ed. by A. Lovatelli, C. Conand, S. Purcell,
S. Uthicke, J.-F. Hamel & A. Mercier), pp. 277-286. Food and Agriculture Organization of the United
Nations, Rome.
Riquelme C.E. & Avendaño-Herrera R.E. (2003) Interacción bacteria-microalga en el ambiente marino y uso
potencial en acuicultura. Revista Chilena de Historia Natural 76, 725-736.
Sambrano A., Diaz H. & Conde J.E. (1990) Caracterización de la ingesta en Isostichopus badionotus
(Selenka) y Holothuria mexicana Ludwig (Echinodermata: Holothuroidea). Caribbean Journal of
Science 26, 45–51.
Seo J. Y., Shin I. S. & Lee S. M. (2011a) Effect of dietary inclusion of various plant ingredients as an
alternative for Sargassum thunbergii on growth and body composition of juvenile sea cucumber
Apostichopus japonicus. Aquaculture Nutrition 17(5), 549–556.
Seo J.Y., Shin I.S. & Lee S.M. (2011b) Effect of various protein sources in formulated diets on the growth
and body composition of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture
Research 42(4), 623–627.
Seo J.-Y.Y. & Lee S.-M.M. (2011) Optimum dietary protein and lipid levels for growth of juvenile sea
cucumber Apostichopus japonicus. Aquaculture Nutrition 17, e56–e61.
Sewell M.A. & McEuen F.S. (2006) Phylum Echinodermata: Holothuroidea, In: Atlas of Marine Invertebrate
Larvae. (Ed. by C. M. Young., M. A. Sewell & M. E. Rice), pp. 513-518. Academia Press. España.
Slater, M.J., Carton, A.G. (2007). Survivorship and growth of the sea cucumber Australostichopus (Stichopus)
mollis (Hutton 1872) in polyculture trials with green-lipped mussel farms. Aquaculture 272, 389-398.
Slater M.J. & Jeffs A.G. (2010) Do benthic sediment characteristics explain the distribution of juveniles of the
deposit-feeding sea cucumber Australostichopus mollis? Journal of Sea Research 64, 241-249.
Slater M.J., Jeffs A.G. & Carton A.G. (2009) The use of the waste from green-lipped mussels as a food source
for juvenile sea cucumber, Australostichopus mollis. Aquaculture 292(3–4), 219–224.
153
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Slater M.J., Lassudrie M. & Jeffs A.G. (2011) Method for determining apparent digestibility of carbohydrate
and protein sources for artificial diets for juvenile sea cucumber, Australostichopus mollis. Journal of
the World Aquaculture Society 42(5), 714–725.
Smiley S. (1986) Metamorphosis of Stichopus californicus (Echinodermata: Holothuroidea) and its
phylogenetic implications. The Biological Bulletin 171, 611-631.
Sun X. & Li Q. (2014) Effects of delayed first feeding on larval growth, survival and development of the sea
cucumber Apostichopus japonicus (Holothuroidea). Aquaculture Research 45, 278-288.
Sun Y., Wen Z., Li X., Meng N., Mi R., Li Y., Li S. (2012) Dietary supplement of fructooligosaccharides and
Bacillus subtilis enhances the growth rate and disease resistance of the sea cucumber Apostichopus
japonicus (Selenka). Aquaculture Research 43, 1328-1334.
Vergara W. & Rodríguez A. (2015) Histología del tubo digestivo de tres especies de pepino de mar
Isostichopus badionotus, Isostichopus sp. y Stichopus hermanni (Aspidochirotida: Stichopodidae).
Revista de Biología Tropical 63(4), 1021-1033.
Wang J., Xu Y., Li X., Li J., Bao P., Che J., Li S. & Jin L. (2015) Vitamin E requirement of sea cucumber
(Apostichopus japonicus) and its’ effects on nonspecific immune responses. Aquaculture Research
46(7), 1628–1637.
Xia B., Gao Q.-F., Wang J., Li P., Zhang L. & Zhang Z. (2015a) Effects of dietary carbohydrate level on
growth, biochemical composition and glucose metabolism of juvenile sea cucumber Apostichopus
japonicus (Selenka). Aquaculture 448, 63–70.
Xia B., Wang J., Gao Q.-F., Sun Y., Zhang L., Ma J. & Liu X. (2015b) The nutritional contributions of
dietary protein sources to tissue growth and metabolism of sea cucumber Apostichopus japonicus
(Selenka): Evidence from nitrogen stable isotope analysis. Aquaculture 435, 237-244.
Xia S., Yang H., Li Y., Liu S., Xu Q. & Rajkumar M. (2013a) Effects of food processing method on
digestibility and energy budget of Apostichopus japonicus. Aquaculture 384–387, 128–133.
Xia S., Yang H., Li Y., Liu S., Zhou Y. & Zhang L. (2012a) Effects of different seaweed diets on growth,
digestibility, and ammonia-nitrogen production of the sea cucumber Apostichopus japonicus (Selenka).
Aquaculture 338-341, 304-308.
Xia, S.-D, Zhao, P., Chen, K., Li, Y., Liu, S., Zhang, L., Yang, H. (2012b). Feeding preferences of the sea
cucumber Apostichopus japonicus (Selenka) on various seaweed diets. Aquaculture 344-349, 205–209.
154
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.
Xia, S.D., Yang, H.S., Li, Y., Liu, S.L., Zhang, L.B., Chen, K. & Zou, A.G. (2013b). Effects of differently
processed diets on growth, immunity and water quality of the sea cucumber, Apostichopus japonicus
(Selenka, 1867). Aquaculture Nutrition 19(3), 382–389.
Xilin S. (2004) The progress and prospects of studies on artificial propagation and culture of the sea
cucumber, Apostichopus japonicus. In: Sea Cucumber Aquaculture: Hatchery production, Juvenile
growth and Industry Challenges. (ed. by A. Mercier & J.-F. Hamel), pp. 431-454. Woodhead Publishing
Ltd, Cambridge.
Xu Q., Hamel J.-F. & Mercier A. (2016) Feeding, digestion, nutritional physiology, and bioenergetics. In: The
Sea Cucumber Apostichopus japonicus: History, Biology and Aquaculture (ed. by H. Yang. J.-F. Hamel
& A. Mercier), pp. 153-176. Academic Press, London.
Yan F., Tian X., Dong S., Fang Z. & Yang G. (2014) Growth performance, immune response, and disease
resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus fed a
supplementary diet of the potential probiotic Paracoccus marcusii DB11. Aquaculture 420-421, 105-
111.
Yanagisawa T. (1998) Aspects of the biology and culture of the sea cucumber. In: Tropical Mariculture (ed.
by. S. de Silva). Academic Press.
Yasoda H.N., Chi Z. & Ling Z.K. (2006) Probiotics and sea cucumber farming. Beche-de-Mer information
Bulletin, 45-48.
Ye W.-J., Tan X.-Y., Chen Y.-D. & Luo Z. (2009) Effects of dietary protein to carbohydrate ratios on growth
and body composition of juvenile yellow catfish, Pelteobagrus fulvidraco (Siluriformes, Bagridae,
Pelteobagrus). Aquaculture Research 40, 1410-1418.
Yu H. B., Gao Q. F., Dong S. L., Wen B., Hou Y. R. & Ning L. G. (2015) Utilization of corn meal and
extruded soybean meal by sea cucumber Apostichopus japonicus (Selenka): Insights from carbon stable
isotope analysis. Aquaculture 435, 106–110.
Yuan, X., Yang, H., Zhou, Y., Mao, Y.Xu, X., Zhang, T. & Liu, Y. (2006). The influence of diets containing
dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber
Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture 256(1–4), 457–467.
Zacarias-Soto M. & Olvera-Novoa M.A. (2015) Effect of different diets on body biochemical composition of
the four-sided sea cucumber, Isostichopus badionotus, under culture conditions. Journal of the World
Aquaculture Society 46(1), 45–52.
155
Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo
Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,
M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.