Aplicaciones a la Mejora de la Utilización Nutritiva del Alimento en Cíclidos Cultivados en México

Authors

  • A. Uscanga Martínez, Universidad de Ciencias y Artes de Chiapas
  • F.J Moyano López Universidad de Almería
  • C.A. Álvarez-González Universidad Juárez Autónoma de Tabasco
  • N. Perales-García Universidad de Ciencias y Artes de Chiapas

Keywords:

eficiencia enzimática, digestibilidad, hidrólisis, inhibidores, harinas

Abstract

El abastecimiento de materias primas para la fabricación de alimento se está dejando sentir, el aumento de la demanda de ingredientes para la alimentación de peces se está enfocando en nuevas fuentes de proteínas, con la finalidad de disminuir la inclusión de harina de pescado, por tal razón en los últimos años las investigaciones pretenden enfocarse en la evaluación de fuentes de proteína de origen vegetal y animal. El presente trabajo pretende dar a conocer los avances en la investigación de nuevas alternativas alimenticias para la nutrición de peces, evaluando su digestibilidad, grado de inhibición, y evaluación de enzimas digestivas a través del tracto intestinal, dando como resultado que la hidrólisis de la proteina en especies como castarrica (Cichlasoma uruptalmus) muestran una mayor digestibilidad al sorgo, estos se debe a que los hábitos alimenticios de estas especie es omnivora, en el caso de las tenguayacas (Petenia splendida) se observo que los peces tienen mayor digestibilidad a las harinas de fuente animal por tener hábitos carnívoros, y con ello tener nuevas alternativas de fuentes de proteína para la fabricasion de piensos altamente digeribles que con ello se cubren varios aspectos como tener las fuentes proteínas a menor costo y obtener piensos que se han mas amigables con el medio ambiente. Los resultados para la inhibición enzimática muestran que los extractos de los ciclidos frente a concentraciones crecientes de harinas reflejan que la harina de sorgo presenta los mayores niveles de inhibición sobre las proteasa alcalinas de la tenguayaca alcanzando un porcentaje de inhibición del (60%) a partir de una concentración de 1.2 mg/ml de harina. En la evalución de eficiencia de proteína los resultados obtenidos en ambas enzimas tripsina y quimotripsina muestran un valor de 25.04 ± 3.70 y 24,41 ± 1,26 unidades, respectivamente, mientras que en el intestino posterior este es de (2,39 ± 1,00 y 4,90 ± 1,28 unidades, respectivamente). Después del tiempo de hidrólisis el 10 % de los aminoácidos presentes fueron liberados

Downloads

Download data is not yet available.

References

Adler-Nissen, J. 1976. Enzymatic hydrolysis of proteins for increased solubility. J. Agric. Food Chem., 24: 1090-1093.

Alarcón, F.J. 1997. Procesos digestivos en peces marinos: Caracterización y aplicaciones prácticas. Tesis de Doctorado, Universidad de Almería, España. 187 pp.

Alarcón, F.J., M. Díaz, F.J. Moyano y E. Abellán. 1998. Characterization and functional propeties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiol Biochem. 19:257-267.

Alarcón, F.J., Moyano, F.J. and Díaz, M. 1999. Effect of inhibitors present in protein sources on digestive proteases of juvenile sea bream (Sparus aurata). Aquatic Living Res. 12(4): 233–238.

Alarcón FJ, Moyano FJ, Díaz M. 2001. Use of SDS-page in the assessment of protein hydrolysis by digestive enzymes. Aquaculture International 9:255-267.

Alarcón JF, Moyano FJ, Díaz M. 2002. Evaluation of different protein sources for aquafeeds by an otimised pH-Stat system. Journal Science of Food and Agriculture 82:697-704

Alpers, D.H. 1996. Digestion and absorption of carbohydrates and proteins. En: Johnson L.R. (ed). Physiology of Gastrointestinal Tract. 3rd ed. New YorK: Raven Press, 1994:1723-1749.

Alliot, E., A. Pastoreaud y J. Trellu. 1977. Evolution des activities anzymatiques dans le tube digestif au cours de la vie larvaire du bar (Dicentrarchus labrax) variations des proteinogrammes et des zymogrammes. 3rd Meeting of the ICES Working group of Mariculture, Brest, France, May 10-13, Actes de Colloques du CNEXO, 4:85-91.

Alvarez-González, C.A., Civera-Cerecedo, R., Ortíz-Galindo, J.L., Dumas, S., Moreno-Legorreta, M., Grayeb-Del Alamo, T., 2001b. Effect of dietary protein level on growth and body composition of juvenile spotted sand bass, Paralabrax maculatofasciatus, fed practical diets. Aquaculture 194, 151–159.

Andersen, N.G. (1998). The effect of meal size on gastric evacuation in whiting. J Fish Biol 52:743–755.

Andersen, N.G. (1999). The effects of predator size, temperature, and prey characteristics on gastric evacuation in whiting. J Fish Biol 54:287–301.

Andersen, N.G. (2001). A gastric evacuation model for three predatory gadoids and implications of using pooled field data of stomach contents to estimate food rations. J Fish Biol 59:1198–1217.

Andersen, N.G. & Beyer, J.E. (2005). Mechanistic modelling of gastric evacuation in predatory gadoids applying the square root model to describe surface-dependent evacuation. J Fish Biol 67:1392–1412.

Andersen, N.G. & Beyer, J.E. (2007). How are prey fishes of multiple meals evacuated from the stomach of a piscivorous fish?. J Fish Biol 71:219–234.

Anderson, T.A. (1991). Mechanisms of digestion in the marine hervivore, the luderick, Girella tricuspidata (Quoy & Gaimard). J Fish Biol 39:535–547

Anson, M. L. 1938. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. gen. Physiol., 22: 79-89.

Applebaum S.L, Holt, A.J. (2003). The digestive protease, chymotrypsin, as an indicator of nutritional condition in larval red drum (Sciaenops ocellatus). Mar Biol 42:1159–67.

Archibal, A.L. 1987. Comparison of the serum amylases of farm animals. Biochem. Physiol., 88B: 963-968.

Ásgeirsson, B. y J.B. Bjarnasson. 1991. Structural and kinetic properties of chymotrypsin from atlantic cod (Gadus morhua). Comparison with bovine chymotrypsin. Comp. Biochem. Physiol., 99B(2): 327-335.

Bagge, O. (1977). Meal size and digestion in cod (Gadus morhua L.) and sea scorpion (Myoxocephalus scorpius L.). Meddelelser fra Danmarks Fiskeri-og Havundersøgelser 7:437–446.

Barnabé, G. y A. Guissi. 1994. Adaptations of the feeding behaviour of larvae of the sea bass, Dicentrarchus labrax (L.), to an alternating live-food/compound-food feeding regime. Aquacult. Fish. Manag. 25:573-546.

Bassompierre, M., Børessen, T., Sandfeld, P., Rønsholdt, B., Zimmermann, W., McLean, E. 1997. An evaluation of open and close systems for in vitro protein digestion of fish meal. Aquaculture Nutrition 3,153-159.

Behal, F.J., B. Asserson, F. Dawson y J. Hardman. 1965. Arch. Biochem. Byophys., 111: 335-344.

Bergmeyer, H.V. 1974. Methods of Enzymatic Analysis. Vol 2. Phosphatases. Academic Press.

Biswas, K.A., Seoka, M., Takii, K., Kumai, H. 2007. Comparison of apparent digestibility coefficient among replicates and different stocking density in red sea bream Pagrus major. Fisheries Science 73: 19–26

Bitterlich, G. (1985). Digestive enzyme pattern of two stomachless filter feeders, silver carp, Hypophthalmichthys molitrix Val., and bighead carp, Aristichthys nobilis Rich. J Fish Biol 27:103–112.

Blier, P.U., Lemieux, H., Devlin, R.H. (2002). Is the growth rate of fish set by digestive enzymes or metabolic capacity of the tissues? Insight from transgenic coho salmon. Aquaculture 209:379–384

Boisen, S., Eggum, B.O., 1991. Critical evaluation of in vitro methods for estimating digestibility in simple-stomach animals. Nutr. Res. Rev. 4, 141-162.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analitical Biochemistry. 72, 248 254.

Bryant, P.L. y A.J. Matty. 1981. Adaptation of carp (Cyprinus carpio) laevae to artificial diets: 1. Optimum feeding rate and adaptation age for a commercial diet. Aquaculture 23:275-286.

Cahu, C.L. y J.L. Zambonino-Infante. 1994. Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comp. Biochem. Physiol. 109A(2): 213-222.

Cahu, C. 1996. Nutrition des larves de poisson; 1. Déveoppment des enzymes digestives et modifications induites par l´aliment. Journées INRA-IFREMER, Nutrition des Poissons 21-22 fév. Saint-Pée-sur-Nivelle.

Cahu, C. y J.L. Zambonino-Infante. 1997. Is the digestive capacity of marine fish larvae sufficient for compound diet feeding?. Acuacult. Int. 5:151-160.

Cahu, C., J.L. Zambonino-Infante, A.-M. Escaffre, P. Bergot y S. Kaushik. 1998. Preliminary results on sea bass (Dicentrarchus labrax) larvae rearing with compound diet from first feeding. Comparison with carp (Cyprinus carpio) larvae. Aquaculture 169:1-7.

Cahu, C., J.L. Zambonino-Infante, P. Quazuguel y M.M Le Gall. 1999. P¨rotein hydrolyzata vs. fish meal in compound diets for 10-day old sea bass Dicentrarchus labrax larvae. Aquaculture 171:109-119.

Cañavate, J.P. y C. Fernández-Díaz. 1999. Influence of co-feeding larvae with live and inert diets on wening the sole Solea senegalensis onto commercial dry feeds. Aquaculture 174:255-263.

Canioni, P., R. Julien, J. Rathelot y L. Sarda. 1977. Pancreatic and microbial lipases: a comparison of the interaction of pancreatic colipase with lipases of various origins. Lipids, 12: 393-397.

Cara, B. Moyano, F. J., Zambonino, J. L., Fauvel, C. (2007). Trypsin and chymotrypsin as indicators of nutritional status of post-weaned sea bass larvae. J Fish Biol 70:1798-1808.

Caro, C., Mendosa, A., Sánchez, M., 1994. Caracterización del medio ambiente de Petenia splendida en lagunas del sur de Quintana Roo. En memorias del II seminario sobre peces nativos, con uso potencial en acuicultura, del 23 al 26 de mayo de 1994, Cárdenas, Tabasco, México.

Chakrabarti, I., Gani, A., Chaki, K.K., Sur, R., Misra, K.K. (1995). Digestive enzymes in 11 freshwater teleost fish species in relation to food habit and niche segregation. Com Biochem Physiol 112A:167–177.

Chakrabartr, I., Rathore, R.M., kumar, S. (2006). Study of digestive enzyme activities and partial characterization of digestive proteases in a freshwater teleost, Labeo rohita, during early ontogeny. Aquacul Nutr 12:35–43

Chan, A.S., Horn, M.H., Dickson K.A., Gawlicka, A. 2004. Digestive enzyme activities in carnivores and herbivores: comparisons among four closely related prickleback fishs (Teleostei: Stichaeidae) from a California rocky intertidal habitat. ). J Fish Biol 65:848–858.

Cho, S.H., Lee, S.M., Lee, J.H., 2005. Effect of dietary and lipid levels on growth and body composition of juvenile turbot (Scophthalmus maximus L) reared under optimum salinity and temperature conditions. Aquaculture Nutrition 11, 235-240.

Cho, C.Y. & Slinger, S.J. (1979) Apparent digestibility measurement in feedstuds for rainbow trout. In: Finsh Nutrition and Fishfeed Technology (Halver, J.E. & Tiews, K. eds), Vol. 2, pp. 239-247. Heenemann-Verlagsgesellschaft, Berlin.

Cho, C.Y. 1992. Feeding for rainbow trout and other salmonids. With reference to current estimates of energy and protein requirements. Aquaculture, 100, 107–123.

Chong, A.S.C., Hashim, R., Ali A.B. 2002. Assessment of dry matter and protein digestibilities of selected raw ingredients by discus fish (Symphysodon aequifasciata) using in vivo and in vitro methods. Aquaculture Nutrition 8; 229-238.

Choubert, G., de la NouÈ e, J. & Luquet, P. (1982) Digestibility in fish: Improved device for the automatic collection of feces. Aquaculture, 29, 185-189.

Clements, K.D., Rees, D. (1998). Preservation of inherent contractility in isolated gut segments from herbivorous and carnivorous marine fish. J Com Physiol 168B:61–72.

Contreras-García, M.J., 2003. Inversión sexual de mojarras nativas Cichlasoma salvini y Petenia splendida, mediante la administración oral de esteroides sintéticos, Tesis de Licenciatura, UJAT, México, 49 pp.

Cousin, J. C. B., F. Baudin Laurencin y J. Gabaudan. 1987. Ontogeny of enzymatic activities in fed and fasting turbot, Scophthalmus maximus L. J. Fish Biol. 30: 15 33.

Cruz Suárez, L.E. 1996. Digestión en camarón y su relación con formulación y fabricación de alimentos balanceados. 207-232 pág. En: Cruz Suárez, L. E., Ricque Marie, D., Mendoza, R. (Eds.). Avances en Nutrición Acuícola III. Memorias del tercer Simposium Internacional de Nutrición Acuícola. 11 al 13 de Noviembre del 1996. Monterrey, Nuevo León, México.

Dabrowski, K., F. Takashima, C. Strüssmann y T. Yamazaki (1986). Rearing of coregonid larvae with live and artificial diets. Bull. Jap. Soc. Scient. Fish. 52(1):23-30.

Daan, N. (1973). A quantitative analysis of the food intake of the North Sea cod, Gadus morhua. Neth J Sea Res 8:27–48.

Díaz, M., F.J. Moyano, L.F. García-Carreño, F.J. Alarcón y M.C. Sarasquete. 1997. Substrate-SDS-PAGE determination of protease activity through larval development in sea bream. Aquaculture International 5:461-471.

Dimes, L.E. y N.F. Haard. 1994. Estimation of protein digestibility: I. Development of an in vitro method for estimating protein digestibility in salmonids. Comp. Biochem. Physiol. 108A(2-3): 349-362.

Dixon, M. y E. Webb. 1979. Enzymes. Academic Press 3th. New York.

Drewe, K.E., Horn, M.H., Dickson, K.A., Gawlicka, A. (2004). Insectivore to frugivore: ontogenetic changes in gut morphology and digestive enzyme activity in the characid fish Brycon guatemalensis from Costa Rican rain forest streams. J Fish Biol 64:890–902.

Dunn, B.M. 1989. Determination of protease mechanism. In proteolytic Enzymes: A practical approach, (R.J. Beynon y J.S. Bond, Eds.) I.R.L. Press, Oxford, England pp. 57-81.

Dupuis, Y., S. Tardival, Z. Poremska y P. Fournier. 1991. Effect of some alkaline phosphatase inhibitors of intestinal calcium transfer. Int. J. Biochem., 23: 175-180.

Einarsson, S., Davies, P.S., Talbot, C. (1996). The effect of feeding on the secretion of pepsin, trypsin and chymotrypsin in the Atlantic salmon, Salmo salar L. Fish Physiol Biochem 15:439–446.

Egna S. H. 1997. Dynamics of pond aquaculture. Crc press. boca raton New York

Ehrlich, K.F., Catin M-C. y M.B. Rust. 1989. Growth and survival of larvae and postlarvae smallmouth bass fed a commercially prepared dry feed and/or Artemia nauplii. J. World Aquacult. Soc. 20:1-6.

Eid, A.E. y A.J. Matty. 1989. A simple in vitro method for measuring protein digestibility. Aquaculture, 79: 111-119.

El-Sayed, A.M. 1990. Long-term evaluation of cotton seed meal as a protein source for Nile tilapia Oreochromis niloticus (Linn.). Aquaculture 84, 315–320

El-Sayed, A.-F.M. and Teshima, S. 1991. Tilapia nutrition in aquaculture. Reviews in Aquatic Sciences 5, 247–265

El-Sayed, A.M., Nmartinez, I., Moyano, F.J. 2000. Assessment of the effect of plant inhibitors on digestive proteases of nile tilapia using in vitro assays. Aquaculture International 8, 403-415.

Erlanger, B., N. Kokowsky y W. Cohen. 1961. The preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys. 95: 271-278.

FAO. 2009. El estado mundial de la pesca y la acuicultura 2008. Dep. de Pesca y Acuicultura de la FAO, Roma. 196 pp.

Fernández-Díaz, C., E. Pascual y M. Yúfera. 1994. Feeding behaviour and prey size selection of gilthead seabream, Sparus aurata, larvae fed on inert and live food. Mar. Biol. 118:323-328.

Fitzsimmons k. 1997. Tilapia. Proceeding from the fourth international symposium. cooperative extension. Aquaculture vol. 2. november 9-12

Francis, G., Makkar, H. P. S. & Becker, K. 2001.Antinutrional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199: 197-227.

Fris, M.B. & Horn, M.H. (1993). Effects of diet of different protein content on food consumption, gut retention, protein conversion, and growth of Cebidichthys violaceus (Girard), an herbivorous fish of temperate zone marine waters. J Exp Mar Biol Ecol 166:183–202.

García-Carreño, F.L., L.E. Dimes y N.F. Haard. 1993. Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal. Biochem., 214: 65-69.

García-Carreño, F.L., Navarrete del Toro, M.A., Díaz-López, M., Hernández-Cortés, M.P. and Ezquerra, J.M. 1996. Protease inhibition of fish muscle enzymes using legume seeds extracts. J. Food Protection 59: 312–318.

García-Pérez, P.M., 2003. Determinación de la temperatura preferencial y metabolismo de la rutina de la tenguayaca (Petenia splendida Günther, 1862). Tesis de licenciatura, UJAT, Tabasco, México. 42 pp.

Gawlicka, A., B. Parent, M.H. Horn, N. Ross, I. Opstad y O.J. Torrinsen. 2000. Activity of digestive enzymes in yolk-sac larvae of Atlantic halibul (Hippoglossus hippoglossus): indication of readiness for fis}rst feeding. Aquaculture 184:303-314.

Gildberg A and Raa J. 1983.Purification and characterization of pepsins from the Arctic fish capelin (Mallotus villosus). Comp Biochem Physiol 75A:337-342.

Govoni, J.J. 1980. Morphological, histological and functional aspects of alimentary canal and associated organ development in larval Leiostomus xanthurus. Rev. Can. Biol., 39: 69-80.

Grabner, M. 1985. An in vitro method for measuring protein digestibility of fish feed components. Aquaculture. 48: 97-110.

Harris, H. 1989. The human alkaline phospahatases: what we know and what we don't know. Clin. Chim. Acta, 186: 133-150.

Hirikado, M., K. Hirata, Y. Uemarsu, Y. Hatooka y M. Kazama. 1994. Assay for activities of -amylase and glucoamylase used in food processing. J. Food Hyg. Soc. Japan, 35(1): 28-33.

Hjelmeland, K., Huse, I., Jorgensen, T., Molvik, G., Raa, J. (1983). Trypsin and trypsinogen as indices of growth and survival potential of cod (Gadus morhua L.) larvae. Flodevigen Rapportser 3:1–17.

Hofer, R., & Schiemer, F. (1981). Proteolytic activity in the digestive tract of several species of fish with different feeding habits. Oecologia 48:342–345.

Horn, M.H., & Gibson, R.N. (1990). Effects of temperature on the food processing of three species of seaweed-eating fishes from European coastal waters. J Fish Biol 37:237–247.

Horn, M.H. & Messer, K.S. (1992). Fish guts a chemical reactors: a model of the alimentary canals of marine herbivorous fishes. Mar Biol 113:527–535.

Hsu, H.W., D.L. Vavak, L.D. Satterlee y G.A. Miller. 1977. A multienzyme technique for estimating protein digestibility. J. Food Sci. 42: 1269-1273.

Huisman J, Tolman G.H. 1992. Antinutritional factors in the plant proteins of diets for non-ruminants. In: Garnsworthy, PC., Haresign, W., Cole, D.J.A. (Eds.) Recent Advances in Animal Nutrition. Butterworth–Heinemann Ltd, Oxford. 3 - 31.

Hummel, B. C. W. 1959. A modified spectrophotometric determination of chymotrypsin of chymotrypsin, trypsin adn thrombin. Can. J. Biochem. Physiol. 37: 1393-1399.

Hurst, T.P. (2004). Temperature and state-dependence of feeding and gastric evacuation in juvenile Pacific halibut. J Fish Biol 65:157–169.

Igbokwe, E.C. y A.E.R. Downe. 1978. Electrophoretic and histochemical comparison of three strains of Aedes aegypti. Comp. Biochem. Physiol., 60B: 131-136.

Izquierdo, M.S. 1996. Essential fatty acid requirements of culture marine fish larvae. Aquaculture Nutrition 2:183-191.

Jiménez-Pérez, C., 2004. Efecto de la temperatura en el crecimiento de crías de la mojarra tenguayaca (Petenia splendida Günther, 1862), (Pisces: Cichlidae). Tesis de licenciatura, UJAT, Tabasco, México. 44 pp.

Kanazawa, A., S. Koshio y S-I Teshima. 1989. Growth and survival of larvae red sea bream Pagrus major and japanise flounder Paralichthys olivaceus fed microbound diets. J. World Aquacult. Soc. 20:31-37.

Knights, M. 1985. Energetics and fish farming. p. 309-340. In: Fish Energetics, New Perspectives. P. Tytler y P. Calow (Eds.) Cromm Helm. London and Sydney.

Kolkovski, S. y A. Tandler, 2000. The use of squid protein hydrolysate as a protein source in microdiets for gilthead seabream Sparus aurata larvae. Aquaculture Nutrition 6:11-15.

Kolkovski, S., A. Arieli y A. Tandler. 1997. Visual and chemical cues stimulate microdiet ingestion in sea bream larvae. Acuacult. Int. 5:527-536.

Kolkovski, S., A. Tandler, G.Wm. Kissil y A. Gertler. 1993. The effect of dietary exogenous enzymes on ingestion assimilation, growth and survival of gilthead seabream (Sparus aurata, Sparidae, Linnaeus) larvae. Fish Physiology and Biochemistry. 12(3): 203-209.

Krogdahl, A. and Holm, H. 1983. Pancreatic proteinases from man, trout, rat, pig, cow, chicken, mink and fox. Enzyme activities and inhibition by soybean and lima bean proteinase inhibitors. Comp. Biochem. Physiol. 74: 403–409.

Krogdahl, A., Lea, T.B. and Olli, J.J. 1994. Soybean protease inhibitors affect intestinal trypsin activities and amino acids digestibilities in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. A 107: 215–219.

Krogdahl A. 1986. Antinutrients affecting digestive functions and performance in poultry. In Proc. 7th Eur. Poultry conf. 24-28 Aug. Paris Wids. M. Larbier (Ed.) pp. 239-248. Poultry Sci. Ass., Branche Francaise, Paris, France.

Klumpp, D.W. & Nichols, P.D. (1983). Nutrition of the southern sea garfish Hyporhamphus melanochir: gut passage rate and daily consumption of two food types and assimilation of seagrass components. Mar Ecol Prog Ser 12:207–216.

Kunitz, M. 1947. Crystalline soybean trypsin inhibitor II. General properties. J. Gen. Physiol. 30: 291 310.

Kuz’mina, V.V. (1996). Influence of age on digestive enzyme activity in some freshwater teleosts. Aquaculture 148:25–37

Jun-sheng, L., Jian-lin, L., Ting-ting, W. (2006). Ontogeny of protease, amylase and lipase in the alimentary tract of hybrid Juvenile tilapia (Oreochromis niloticus X Oreochromis aureus). Fish Physiol Biochem 32:295–303.

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.

Lauff, M. y R. Hofer. 1984. Proteolityc enzymes in fish development and the importance of dietary enzymes. Aquaculture. 37: 335-346.

Lazo, J.P., Romaire, R.P., Reigh, R.C., 1998. Evaluation of three in vitro enzyme assays for estimating protein digestibility in Pacific white shrimp Penaeus vannamei. J. World Aquac. Soc. 29, 441–449.

Lee, S.M., 2002. Apparent digestibility coefficients of various feed ingredients for juvenile and grower rockfish (Sebastes schlegeli). Aquaculture 207, 79-95.

Liener IE. Toxic Constituents of Plant Foodstuffs. Sydney: Academic Press, 1980.

Liu, Z.Y., Wang, Z., Xu, S.Y., Xu, L.N. (2008). Partial characterization and activity distribution of proteases along the intestine of grass carp, Ctenopharyngodon idella (Val.). Aquacul Nutr 14:31-39.

Logothetis, E.A., Horn, M.H., Dickson, K.A. (2001). Gut morphology and function in Atherinops affinis (Teleostei: Atherinopsidae), a stomachless omnivore feeding on macroalgae. J Fish Biol 59:1298–1312.

Luczynski, M., J. Strzezck y P. Brzuzan. 1987. Secretion of hatching enzyme and its proteolytuc activity in coregoninae (Coregonus albula L and C. lavaretus L) embryos. Fish Physiol. Biochem. 4:57-62.

Lundstedt, L.M., Bibiano, M.J.F., Moraes, G. (2004). Digestive enzymes and metabolic profile of Pseudoplatystoma corruscans (Teleostei: Siluriformes) in response to diet composition. Com Biochem Physiol 137B:331–339.

Maitra, S. & Ray, A.K. (2003) Inhibition of digestive enzymes in rohu, Labeo rohita (Hamilton), fingerlings by tannin: an in vitro study. Aquaculture Research, 34, 93–95.

Maraux, S., D. Louvard y J. Baratti. 1973. The aminopeptidase from hog-intestinal brush border. Biochim. Biophys. Acta 321:282-295.

March, B.E., C. Macmillan y F.W. Ming. 1985. Techniques for evaluation of dietary protein quality for the rainbow trout (Salmo gairdneri). Aquaculture 47:275-292.

Martínez, D.M.I. y Alarcón, L.F.J. 1998. Efecto de los Inhibidores presentes en materias primas vegetales sobre las proteasas alcalinas de los peces. Aquatic

Martínez-Mendoza, J.L., 2004. Desarrollo embrionario larval de la mojarra tenguayaca (Petenia splendida). Tesis de licenciatura, UJAT, Tabasco, México. 71 pp.

Martínez-Palacios, C.A. y Ross, L.G. 1986. The effects of temperatura, body weight and hypoxia on the oxygen consumption of the mexican mojarrra, Cichlasoma urophthalmus (Günter), Aquaculture and Fisheries Management, 17: 243-248.

Martínez-Palacios, C. y Ross, L.G. 1992. The reproductive biology and growth of the Central American Cichlid Cichlasoma urophthalmus (Günter), J. Appl. Ichtiol. 8: 65-75.

Mendoza, E.A., Páramo, S.D., Contreras, M.W., Márquez, C.G., 1993. Alternativas para el desarrollo piscícola para el manejo complementario de áreas inundadas de Tabasco, México. pp. 263-279. En: Tabasco realidad y perpectiva, Vol. II. Gobierno del Estado de Tabasco.

Meyer, G., Machado, F.D. 2004. Protein requirement of jundia fingerlings Rhamdia quelen, at two dietary energy concentrations. Aquaculture 240, 331-343.

Mitchell A.I., Dawson A. and Houlihan D.F. (1993) Trypsin inhibitors in commercial fish food. In Fish Nutrition in Practice. S.J. Kaushik and P. Luquet (Eds.) L. Colloques 61: 219-222. Biarritz, France.

Mowry, R.D., 1963. The special value of methods that color both acidic and vicinal hydroxyl groups in the histochemical study of mucins with revised directions for the coloidal iron stain, the use of Alcian blue G8X and their combinations with the periodic acid- Schiff reaction. Ann. NY Acad. Sci. 106, 402-423.

Moyano, F.J., F.J. Alarcón y M. Díaz. 1998. Comparative biochemistry of fish digestive proteases applied to the development of in vitro digestibility assays. Comp. Biochem. Physiol. 5:135-143.

Moyano, F.J., M. Díaz, F.J. Alarcón y M.C. Sarasquete. 1996. Characterization of digestive enzyme activity during larval developement of gilthead seabream (Sparus aurata). Fish Physiol. Biochem. 15: 121-130.

Moyano, F.J., Martínez, I., Díaz, M., Alarcón, F.J. 1999. Inhibition of digestive proteases by vegetable meals in three fish species; seabream (Sparus aurata), tilapia (Oreochromis niloticus) and African sole (Solea senegalensis). Comparative Biochemistry and Physiology Part B 122:327–332.

Moyano, F.J., Savoie, L., 2001. Comparison of in vitro systems of protein digestion using either mammal or fish proteolytic enzymes. Comp. Biochem. and Physiol. 128A, 359-368.

Morales D. A. 1991. La tilapia en México, biología, cultivo y pesquerías. AGT editorial, S.A.. México. 190 pag.

New, M.B., Wijkström, U.N., 2002. Use of fishmeal and fish oil in aquafeeds: further thoughts on the fishmeal trap. FAO Fisheries Circular No. 975, FIPP/C975. Food and Agriculture Organization of the United Nations, Rome. 61 pp.

Nilsson P.A. & Brönmark, C.B. (2000). The role of gastric evacuation rate in handling time of equal-mass rations of different prey sizes in northern. J Fish Biol 57:516–524.

Ng, N.K., Lim, P.K., Boey, P.L., 2003. Dietary lipid and palm oil source affects growth, fatty acid composition and muscle a-tocopherol concentration of African catfish, Clarias gariepinus. Aquaculture 215, 229-243.

Nugent, J.H.A., Jones, W.T., Jordan, D.J., Mangan, J.L. 1983. Rates of proteolysis in the rumen of the soluble proteins casein, fraction I (18S) leaf protein, bovine serum albumin and bovine submaxilary mucoprotein. British Journal of Nutrition 50:357-368.

Olsson, C. & Holmgren S. (2001). The control of gut motility. Com Biochem Physiol 128A:481–503.

Oña CF, Alarcón J, Díaz M, Abellán E (2003) Estudio comparativo de la degradación in vitro de proteínas por las proteasas estomacales de Denton (Dentex dentex), Pargo (Pagrus Pagrus) y el hibrido Dentex x Pagrus. En: Memorias del II Congreso Iberoamericano Virtual de Acuicultura (CIVA), Univ. de Zaragoza, Zaragoza, España. pp. 540-549.

Pääkkönen J.-P. J. & Marjomäki, T. J. (1997). Gastric evacuation rate of burbot fed single-fish meals at different temperaturas. J Fish Biol 50:555–563.

Pääkkönen J.-P. J., Myyä, R., Marjomäki, T.J. (1999). The effect of meal size on the rate of gastric evacuation of burbot, Lota lota (L.). Ecol Fresh Fish 8:19–54.

Papoutsoglou, E.S. & Lyndon, A.R. (2005). Effect of incubation temperature on carbohydrate digestion in important teleosts for aquaculture. Aquacul Res 36:1252–1264.

Papoutsoglou, E.S. & Lyndon, A.R., (2006a). Digestive enzymes of Anarhichas minor and the effect of diet composition on their performance. J Fish Biol69:446-460.

Papoutsoglou, E.S., & Lyndon A.R. (2006b). Digestive enzymes along the alimentary tract of the parrotfish Sparisoma cretense. J Fish Biol 69:130–140

Pedersen, B.H., Nilssen, E.M., Hjelmeland, K. (1987). Variation in the content of trypsin and trypsinogen in larval herring Clupea harengus digesting copepod nauplii. Mar Biol 94:171–181.

Pedersen, B. and Eggum, B. O. 1983. Prediction of protein digestibility by an in vitro enzymatic pH-stat procedure. J. Anim. Physiol. & Anim. Nutr. 49: 265-277.

Person-Le Ruyet, J., B. Menu, M. Cadena-Roa y R. Métailler. 1983. Use of expanded pellets supplementes with attractive chemical substances for the wening of turbot (Scophthalmus maximus). J. World Maricul. Soc. 14:676-678.

Pillay T.V.R. 1993. Acuaculture principles and practices. fishing news books. 575 pag.

Polunin, N.V.C., Harmelin-Vivien, M., Galzin, R. (1995). Contrasts in algal food processing among five herbivorous coral-reef fishes. J Fish Biol 47:455–465.

Real-Ehuan, G. 2003. Maculinización de crías de mojarra castarrica Cichlasoma urophthalmus mediante la administración de 17-α Metiltestosterona, Tesis de Licenciatura, UJAT-DACBIOL. 57 pp.

Reis, A.P., Valente, M.P.L., Almeida, R.C.M. 2008. A fast and simple methodology for determination of yttrium as an inert marker in digestibility studies. Food Chemistry 108 1094–1098

Resendes-Medina, A. y Salvadores, B.M.L., 1983. Contribución al conocimiento de la biología del pejelagarto Lepisosteus tropicus (Gill) y la mojarra tenguayaca Petenia splendida (Gunther), del estado de Tabasco. Biótica 8(4): 413-426.

Ribeiro, L., J.L. Zambonino-Infante, C. Cahu. y M.T. Dinis. 1999. Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 170:465-473.

Robyt, J. F. y W.J. Whelan. 1968. In: Starch and its Derivates. Radley, J. A. (Ed.). Chapman and Hall, London.

Rojas, C.P. y Mendoza, E.A., 2000. El cultivo de especies nativas en México. Instituto Nacional de la Pesca-SEMARNAP. Dirección General de Investigaciones en Acuacultura. Estado de Salud en la Acuacultura, Nov 2000. 42 pp.

Rungruangsak-Torrisen, K., Rustad, A., Sunde J., Eiane, S.A., Jensen, H.B., Opstvedt, J. y C. 2002. In vitro digestibility based on fish crude enzyme extract for prediction of feed quality in growth trials. Journal of the Science of Food and Agriculture 82:644-654.

Rosenlaud, G., J. Stoss y C. Talbot. 1997. Co-feeding marine fish larvae with inert and live diets. Aquaculture 155: 183-191.

Sánchez-Concha, J. y Rodríguez-Pérez, J. 1993. Inversión sexual de larvas de Cichlasoma urophthalmus mediante la aplicación de andrógenos. Tesis de Licenciatura, UJAT-DACBIOL. 79 pp.

Santiago, L.M., Jardón, O., Jaramillo, S.G., Reyes, A.J., Sánchez, V.A., 1997. Edad, crecimiento y hábitos alimenticios de Cichlasoma salvini (Günther), Cichlasoma urophthalmus (Günther), Oreochromis niloticus (Linneo) y Petenia splendida (Günther). Presa Miguel de la Madrid H. (Cerro de oro), Tuxtepec, Oaxaca. Resúmenes del V Congreso Nacional de Ictiología 3-5 de febrero de 1997, Mazatlán, Sinaloa, México. 38 pp.

Sarbahi, D.S. 1951. Studies of the digestive tracs and the digestive enzymes of the goldfish Carassius auratus (Linnaeus) and the largemouth black bass Micropterus salmoides (Lacépede). Bull. Mar. Biol. Lab. Woods Hole 100:24-257.

Satterlee, L.D., H.F. Marshall y J.M. Tennyson. 1979. Measuring protein quality. J.A.O.C.S., 56: 103-109.

Saunders, R.M., M.A. Conner, A.N. Booth, E.M. Bickoff y G.O. Kohler. 1972. Measurment of digestibility of alfalfa concentrates by in vivo and in vitro methods. J. Ntr., 103: 530-535.

Savoie, L. y S.F. Gauthier. 1986. Dialysis cell for the in vitro measurement of protein digestibility. J. Food Sci. 51: 494-498.

Savoie, L. 1994. Digestion and absorption of food: usefulness and limitations of in vitro models. Canadian Journal Physiology and Pharmacology 72:407-414.

Sveier, H., Kvamme, B.O., Raae, A.J. 2001. Growth and protein utilization in Atlantic salmon (Salmo salar L.) given a protease inhibitor in the diet. Aquaculture Nutrition 17; 255-264.

SEMARNAP, 2000. La acuacultura en México. http://www.semarnap.gob.mx.

Shiau, S. y H. Liang. 1995 Carbohydrate utilization and digestibility by tilapia, Oreochromis niloticus x O. aureus, are affected by chromic oxide inclusion in the diet. J. Nutr. 125(4): 976-982.

Scocco, P., Menghi, G., Ceccarelli. (1997). Histochemical differentiation of glycoconjugantes occurring in the tilapine intestine. J Fish Biol 51:848–857.

Soottawat, B., Somkid, K., Angkana, S. 1999. Inhibitory effects of legume seed extracts on fish Proteinases. Journal of the Science of Food and Agriculture 79:1875 - 1881

Singh-Renton, S. & Bromley, P.J. (1996). Effects of temperature, prey type and prey size on gastric evacuation in small cod and whiting. J Fish Biol 49:702–713.

Smith, D.M., Tabrett, S.J., Glencross, B.D., Irvin S.J., Barclay, M.C. 2007. Digestibility of lupin kernel meals in feeds for the black tiger shrimp, Penaeus monodon. Aquaculture 264 353–362

Smith, R.L. & Paulson, A.C. (1974). Food transit times and gut pH in two Pacific parrotfishes. Copeia 1974:796–799.

Stauffer, C. 1989. Enzyme Assays for Food Scientists. Van Nostand Reinhold/AVI, New York. 552 pp.

Stone, A.J. D., Gibson, G.T., Johansen, A.K., Overturf , K., Sealey, M.W., Hardy, W.R. 2008. Evaluation of the effects of repeated fecal collection by manual stripping on the plasma cortisol levels, TNF-α gene expression, and digestibility and availability of nutrients from hydrolyzed poultry and egg meal by rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture 275 250–259

Storebakken, T., Kvien, I.S., Shearer, K.D., Grisdale-Helland, B., and Helland, S.J. (1999). Estimation of gastrointestinal evacuation rate in Atlantic salmon (Salmo salar) using inert markers and collection of faeces by sieving: evacuation of diets with fish meal, soybean meal or bacterial meal, Aquaculture 172:291–299.

Strickland, J.D.H. y T.R. Parsons. 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada. Ottawa. 309 pp.

Stroud, R. 1975. A family of proteins-cutting proteins. Sci. Am., 231(1): 74-89.

Tacon, A.G.J. 1993. Feed ingredients for warmwater fish: fish meal and other processed feedstuffs. FAO Fisheries Circular, 845: 64 pp.

Tacon, A.G.J. 1995. Application of nutrient requirement data under practical conditions: special problems of intensive and semi-intensive fish farming. J. Applied Ichthyol., 11: 205-214.

Tacon, A.G.J. 1997. Fish meal replacers: Review of antinutrients within oilseeds and pulses. A limiting factor for the aquafeed Green Revolution, Cah. Opt. Médit., 22: 153–182.

Tanaka, M., S. Kawai y S. Yamamoto. 1972. On the development of the system and changes in activities of digestive enzymes during larval and juvenil stage in ayu. Bull. Jap. Soc. Scient. Fish, 38:1143-1152.

Targett, T. E. & Targett, N. M. (1990). Energetics of food selection by the herbivorous parrotfish Sparisoma radians: roles of assimilation efficiency, gut evacuation rate, and algal secondary metabolites. Mar Ecol Prog Ser 66:13–21.

Tonheim, S.K., Nordgreen, A., Høgøy, I., Hamre, K., Rønnestad, I. 2007. In vitro digestibility of water-soluble and water-insoluble protein fractions of some common fish larval feeds and feed ingredients. Aquaculture 262 426–435.

Tucker, J.W. 1998. Marine fish culture. Kluwer Academic Publishers, Massachusetts, U.S.A. 750 p.

Ueberchär, B. 1993. Measurement of proteolytic anzyme activity: Significance and application in larval fish research. Part III. p. 233-239. In: Physiological and biochemical aspects of fish development. Walther, B.T. y Fyhn, H.J. (Eds.). Univ. of Bergen, Norway.

Ueberschär, B. 1995. The use of tryptic enzyme activity mesurement as a nutritional condition index: laboratory calibration data and field application. ICES- J Mar Sci 201:119–129.

Valtierra, V.M.T., Schmitter, S.J.J., 2000. Hábitos alimentarios de las mojarras (Perciformes: Cichlidae) de la laguna Caobas, Quintana Roo, México. Rev. Biol. Trop. 48, 2-3.

Vandenberg, G.W., & De La Noue, J. 2001. Apparent digestibility comparison in rainbow trout (Oncorhynchus mykiss) assessed using three methods of faeces collection and three digestibility markers. Aquaculture Nutrition 7; 237-245.

Vasiluk, L., Pinto, J.L., Tsang, W.S., Gobas, A.P.C.F., Eickhoff, C., Moore, M.M. 2008. The uptake and metabolism of benzo[a]pyrene from a sample food substrate in an in vitro model of digestion. Food and Chemical Toxicology 46 610–618.

Velasco, R.C., 1976. Los peces de agua dulce del Estado de Chiapas. Ediciones del Gobierno del Estado de Chiapas, México. 154 pp.

Verreth, J. y M. Van Tongeren. 1989. Weaning time in Clarias gariepinus (Burchell) larvae. Acuaculture 83:81-88.

Versaw, W., Cuppett, S.L., Winters, D.D. and Williams, L.E. 1989. An improved colorimetric assay for bacterial lipase in nonfat dry milk. J. Food Sci. 54 : 232-254.

Versichelle, D., P. Léger, P. Lavens y P. Sorgeloos. 1989. L’utilisation d’artémia. In: Aquaculture (G. Barnabé, ed.). Technique et Documentation, Lavoisier, Paris, pp. 241-259.

Vidal-López, J.M., 2004. Masculinización de crías de la mojarra tenguayaca Petenia splendida Gunther 1862 mediante bioencapsulado del esteroide 17--metiltestosterona en nauplios de Artemia salina. Tesis de Licenciatura, UJAT. 53 pp.

Vizcarra-Quiroz, J.J. 1986. Dosis letal de triclorfon (Dipterex) en Cichlasoma urophthalmus (Cichlidae). Tesis de Licenciatura, Instituto Tecnológico de Mar, Veracruz. 56 pp.

Waldford, J. y T.J. Lam. 1993. Development of digestive tract and proteolytic anzyme activity in seabass (Lates calcarifer) larvae and juveniles. Aquaculture 109:187-205.

Walter, H.E. 1984. Proteinases: methods with hemoglobin, casein and azocoll as substrates. In Methods of Enzymatic Analysis. Vol. V, pp. 270-277. Edited by H.J. Bergmeyer. Verlag Chemie. Weinham.

Weber, K. y M. Osborn. 1969. The reliability of molecular weight determinations by dodecyl sulfate polyacrylamide gel electrophoresis. J. Biol. Chem., 244: 4406-4412.

Welcomme, R., 1988. International introduction of inland aquatic species. FAO Fisheries Technical Paper. 318 pp.

Zar, J.H. (1996). Biostatical Analysis. Tercera Edición. Prentice Hall. N.J. USA.718 pp.

Zambonino-Infante J.L. y C. Cahu. 1994. Development and response to a diet change of some digestive enzymes in sea bass (Dicentrarchus labrax) larvae. Fish Physiol. Biochem. 12(5): 399-408.

Zambonino-Infante, J.L. y C. Cahu. 1999. High dietary lipid levels enhance digestive tract maturation and improve Dicentrarchus labrax larval development. J. Nutr. 129:1195-1200.

Zambonino-Infante, J.L., C. Cahu, A. Péres, P. Quazuguel y M.M. Le Gall. 1996. Sea bass (Dicentrarchus labrax) larvae fed differen Artemia rations: growth, pancreas enzymatic response and development of digestive functions. Aquaculture 139:129-138.

How to Cite

Uscanga Martínez, A., Moyano López, F., Álvarez-González, C., & Perales-García, N. (2011). Aplicaciones a la Mejora de la Utilización Nutritiva del Alimento en Cíclidos Cultivados en México. Avances En Nutrición Acuicola. Retrieved from https://nutricionacuicola.uanl.mx/index.php/acu/article/view/85

Most read articles by the same author(s)

Similar Articles

<< < 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.