Conocimiento actual y nuevas perspectivas en el desarrollo de dietas para larvas de peces marinos

Autores/as

  • Juan Pablo Lazo Centro de Investigación Científica y de Estudios Superiores de Ensenada

Palabras clave:

dietas artificiales, peces marinos, requerimientos nutricionales

Resumen

La investigación realizada durante los últimos veinte años con el fin de desarrollar dietas
artificiales para larvas de peces marinos no ha logrado producir una dieta que reemplace totalmente la
utilización de alimento vivo. Sin embargo, avances recientes en el conocimiento de la capacidad digestiva y
requerimientos nutricionales de las larvas indican que no estamos muy lejos de lograr este objetivo. La
mayoría de los estudios que han examinado dietas artificiales indican crecimiento y supervivencia inferior
comparadas con la utilización del alimento vivo. Anteriormente, esto había sido atribuido a una baja actividad
enzimática en las larvas y al efecto compensatorio de las enzimas exógenas presentes en el alimento vivo. En
contraste, investigaciones recientes indican que el aporte de las enzimas exógenas a la actividad total es
relativamente insignificante. El reto actual en el desarrollo de dietas para larvas de peces marinos, consiste en
identificar y caracterizar la estructura química de los nutrientes requeridos, y de proveerlos en las
proporciones adecuadas para que el sistema digestivo pueda digerirlos y absorberlos. El presente trabajo
intenta integrar los conocimientos actuales sobre la capacidad digestiva de las larvas, los requerimientos
nutricionales y la tecnología de producción de dietas, para lograr el desarrollo de dietas que permitan
exitosamente remplazar la utilización de alimento vivo en el cultivo de larvas de peces marinos. Para ello se
revisan el desarrollo y fisiología digestiva de las larvas, sus requerimientos nutricionales, los tipos de dietas
actualmente utilizados y finalmente se sugieren algunos índices de tipos y niveles de nutrientes que podrían
ser utilizados como guía para formular una dieta artificial “ideal”.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Baragi, V., Lovell, R.T., 1986. Digestive enzyme activities in stripped bass from first feeding through larval development.

Trans. Am. Fish. Soc., 115:478-484.

Brinkmeyer, R., Holt, G. J., 1998. Highly unsaturated fatty acids in diets for red drum (Sciaenops ocellatus) larvae.

Aquaculture, 161:53-268.

Cahu, C.L., Zambonino-Infante, J.L., 1994. Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet:

effect on digestive enzymes. Comp. Biochem. Physiol., 109, 213-222.

Cahu, C.L., Zambonino-Infante, J.L., 1995. Effect of the molecular form of dietary nitrogen supply in sea bass larvae:

Response of pancreatic enzymes and intestinal peptidases. Fish Physiol. Biochem., 14: 209-214.

Cahu, C.L., Zambonino-Infante, J.L., 1997. Is the digestive capacity of marine fish larvae sufficient for compound diet

feeding? Aquacult. Int., 5:151-160.

Cahu, C.L., Zambonino-Infante, J.L., Quazuguel, P., Le Gall, M.M., 1999. Protein hydrosylate vs. fish meal in compound

diets for 10-day old seabass Dicentrarchus labrax larvae. Aquaculture. 171, 109-119.

Castell, J.D., Bell, J.G., Tocher, D.R., Sargent, J.R., 1994. Effects of purified diets containing different combinations of

arachidonic and docodahexaenoic acid on survival, growth and fatty acid composition of juvenile turbot

(Scophthalmus maximus). Aquaculture. 128, 315-333.

Coutteau, P., Geurden, I., Camara, M.R., Bergot, P., Sorgelos, P. 1997. Review on the dietary effects of phospholipids in

fish and crustacean larviculture. Aquaculture. 155, 149-164.

Dabrowski, K., 1979. The role of proteolitic enzymes in fish digestion. In Cultivation of Fish Fry and its Live Food, Vol. 4,

E. Styczunska-Jurewivcsk, T. Jaspers and E. Persoone (Ed.), European Mariculture Society, Belgium, pp. 107-

Dabrowski, K., 1984. The feeding of fish larvae: Present “state of the art” and perspectives. Reprod. Nutr. Dev., 24:807-

Diaz, M., Moyano, F.J., Garcia-Carreno, F.L., Alarcon, F.J., Sarasquete, M.C., 1997. Substrate-SDS-PAGE determination

of protease activity through larval development in sea bream. Aquacult. Int., 5,461-471.

Fyhn, H.J., 1993. Multiple function of free amino acids during embryogenesis in marine fishes. In Physiological and

biochemical aspects of fish development. B.T. Walther and H. Jorgen-Fyhn (Eds.) University of Bergen, Norway,

pp 299-308.

Geurden, I., Radunz-Neto, J. , Bergot, P., 1995. Essentiality of dietary phospholipids for carp (Cyprinus carpio L.) larvae.

Aquaculture. 131, 303-314.

Geurden, I., Bergot, P., Schwartz, L. Sorgeloos, P., 1998. Relationship between dietary phospholipid classes and neutral

lipid absorption in newly-weaned turbot, Scophthalmus maximus. Fish Physiol. Biochem. 19, 217-228.

Gjellesvik, D. R., Lombardo, D., Walther, B.T., 1992. Pancreatic bile salt dependent lipase from cod (Gadus morhua):

purification and properties. Biochim. Biosphys. Acta, 1124:123-134.

Govoni, J.J., Boehlert, G.W., Watanabe, Y., 1986. The physiology of digestion in fish larvae. Environ. Biol. Fish., 16:59-77.

Hjelmeland, K, Huse, I., Jorgensen, T., Molovik, G., Raa, J., 1984. Trypsin and trypsinogen as indices of growth and

survival potential of cod (Gadus morhua) larvae In The Propagation of Cod (Gadus morhua) Dahl E., D.

Danielsen, E. Moksness amd P. Solemdal (Eds.) Arendal, Norway, pp. 189-202

Izquierdo, M.S., Socorro, J., Arantzamendi, L., Hernández-Cruz, C.M., 2000. Recent advances in lipid nutrition in fish

larvae. Fish Physiol. Biochem. 22,97-107.

Holt, G. J., 1993. Feeding larval red drum on microparticulate diets in closed recirculating water system. J. World Aquacult.

Soc., 42:225-240.

Kolkovski, S., Tandler A., Kissil G. W., Gertler, A., 1993. The effect of dietary exogenous digestive enzymes on ingestion,

assimilation, growth and survival of gilthead seabream (Sparus aurata, Sparidae, Linnaeus) larvae. Fish Phys.

Biochem., 12:203-209.

Koven, W.M., Kolkovski, S., Tandler, A., Kissil, G. Wm., Sklan, D., 1993. The effect of dietary lecithin and lipase, as function

of age, on n-9 fatty acid incorporation in the tissue lipids of Sparus aurata larvae. Fish Physiol. Biochem. 13, 275-

Kurokawa, T., Shiraishi, M., Suzuki, T., 1998. Quantification of exogenous protease derived from zooplankton in the intestine

of Japanese sardine (Sardinops melanotictus) larvae. Aquaculture, 161:491-499.

Lauf, M., Hoffer, R., 1984. Proteolitic enzymes in fish development and the importance of dietary enzymes. Aquaculture,

, 335-346.

Lavens, P., Sogeloos, P., Dhert, P., Devresse, B., 1995. Larval food In Broodstock Management and Egg and Larval

Quality. N. R. Broomerage and R. J. Roberts (Ed.) Blackwell Science, U.K., pp 373-398

Lazo, J.P., 1999. Development of the digestive system in Red Drum (Sciaenops ocellatus) larvae. P.h.D. Dissertation. The

University of Texas at Austin. USA.

Lazo, J.P., Holt, G.J., Arnold, C.R., 2000. Ontogeny of pancreatic enzymes in larval red drum (Sciaenops ocellatus).

Aquaculture Nutrition 6:183-192.

Lazo, J.P., Dinnis, M.T., Faulk, C., Holt, G.J., Arnold, C.R., 2000. Co-feeding microparticulate diets with algae: Toward

eliminating the need for zooplankton at first feeding in larval red drum. Aquaculture 188, 339-351.

Moyano, F.J., Díaz, M., Alarcón, F.J., Sarasquete, M.C., 1996. Characterization of digestive enzyme activity during larval

developement of gilthead seabream (Sparus aurata). Fish Physiol. Biochem. 15: 121-130.

Munilla- Moran, R., Stark, J.R., Babour, A., 1990. The role of exogenous enzymes in digestion in cultured turbot larvae

(Scopththalmus maximus L.). Aquaculture, 88: 337-350.

Moffatt, N.M., 1981. Survival and growth of northern anchovy larvae on low zooplankton densities as affected by the

presence of a Chlorella bloom. Rapp. P.-V. Reun. Cons. Int. Explor. Mer, 178:475-480.

Olsen, R.E., Henderson, R.J., Pedersen, T., 1991. The influence of dietary lipid classes in the fatty acid composition of

small cod Gadus morhua L. juveniles reared in an enclosure in northern Norway. J. Exp. Mar. Biol. Ecol. 148, 59-

Ozkizilcik, S., Chu, F.-L. E., 1996. Preparation and characterization of a complex microencapsulated diet for striped bass

Morone saxatalis larvae. J. Microencapsulation. 13, 331-343.

Person-Le Ruyet, J., 1989. Early weaning of fish larvae onto microdiets: constraints and perspectives. In Advances in

Tropical Aquaculture, Aquacop. Infremer, Actes de Colloque 9, pp 625-642.

Person-LeRuyet, J., Alexandre, J.C., Thebaud, L. T., Mugnier, C., 1993. Marine Fish Larvae Feeding: Formulated diets or

live prey?. J. World Aquacult. Soc., 42:211-224.

Rainuzzo, J.R., Reitan, K.I., Olsen, Y., 1994. Effect of short and long-term lipid enrichment on total lipids, lipid class and fatty

acid composition in rotifers. Aquacult. Int., 2:19-32.

Reitain, K., Rainuzzo, J. R., Oie, G., Olsen, Y., 1997. A review of the nutritional effects of algae in marine fish larvae.

Aquaculture 155:207-221

Ronnestad, I., Fyhn, H.J., Graviningen, 1992. The importance of free amino acids to the energy metabolism of eggs and

larvae of turbot (Scophthalmus maximus). Mar. Biol. 120, 187-196.

Ronnestad, I., Thorsen, A., Finn, R.N., 1999. Fish larval nutrition: a review of recent advances in the roles of amino acids.

Aquaculture. 177, 201-216.

Sargent, J.R., Bell, J.G., Bell, M.V., Henderson, R.J., Rocher, D.J., 1993. The metabolism of phospholipids and

polyunsaturated fatty acids in fish. In: Lahlou, B., Vitiello, P. (Eds.) Aquaculture: Fundamentals and Applied

Research. Coastal and Estuarine Studies 43, American Geophysical Union, Washington, D.C., pp. 103-124.

Sargent, J.R., McEnvoy, L.A., Bell, J.G., 1997. Requirements, presentation and sources of polyunsaturated fatty acids in

marine fish larval feeds. Aquaculture. 155, 117-127.

Sargent, J., Bell, G., McEnvoy, L., Tocher, D., Estevez A., 1999a. Recent developments in the essential fatty acid nutrition

of fish. Aquaculture. 177,191-199.

Sargent, J., McEnvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., Tocher, D., 1999b. Lipid nutrition of marine fish

during early development: current status and future directions. Aquaculture. 179, 217-229.

Smith, L., 1989. Digestive Functions in Teleost Fishes In Fish Nutrition. J. Halver (Ed.) Academic Press, Inc. London. pp

-422.

Tanaka, M., 1973. Studies in the structure and function of the digestive system of teleost larvae. D. Agric. Thesis, Kyoto

University, Japan.

Watanabe, T., Tamiya, T., Oka, A. , Hirata, C., Kitajima, C. S., Fujita, 1983. Improvement of dietary value of live foods for

fish larvae by feeding them on w3 highly unsaturated fatty acids and fat-soluble vitamins. Bull. Jpn. Soc. Sci. Fish.

:1015-1022.

Watanabe, Y., Kiron, V., 1994. Prospects in larval fish dietetics. Aquaculture 124:223-251.

Yúfera, M., Sarasquete, M.C., Fernández-Díaz, C., 1996. Testing protein-walled microcapsules for the rearing of firstfeeding

gilthead sea bream (Sparus aurata) larvae. Mar. Freshwater Res. 47, 211-216.

Yúfera, M., Pacual, E., Fernández-Díaz, C., 1999. A highly efficient microencapsulated food for rearing early larvae of

marine fish. Aquaculture. 177, 249-256.

Zambonino-Infante, J.L., Cahu, C., 1994. Development and response to a diet change of some digestive enzymes in sea bass

(Dicentrarchus labrax) larvae. Fish Physiol. Biochem., 12:399-408.

Zambonino-Infante, J.L., Cahu, C.L., Péres, A., 1997. Partial substitution of di- and tripeptides for native proteins in sea

bass diet improves Dicentrarchus labrax larval development. J. Nutr. 127, 608-614.

Descargas

Cómo citar

Pablo Lazo, J. (2019). Conocimiento actual y nuevas perspectivas en el desarrollo de dietas para larvas de peces marinos. Avances En Nutrición Acuicola. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/279