Advances in Understanding of Taurine Functions in Fishes Across Species and Life Stages

Autores/as

  • Guillaume P. Salze Auburn University
  • D. Allen Davis Auburn University
  • Matthew Resley Center for Aquaculture Research and Development
  • Nicole Rhody Center for Aquaculture Research and Development
  • Kevan Maine Center for Aquaculture Research and Development
  • Kevin Stuart Hubbs-SeaWorld Research Institute
  • Mark Drawbridge Hubbs-SeaWorld Research Institute

Palabras clave:

Taurine function, Seriola lalandi, Trachinotus carolin

Resumen

Taurine is now widely recognized as an essential nutrient in many teleost species, and during the past decade investigations have focused on determining quantitative requirement levels and physiological and metabolic responses to dietary taurine. Although the current state of knowledge is biased toward high-value marine carnivorous species, evidence points to functional differences among species (e.g., bile salt conjugation, osmoregulation, membrane stability). Prediction of the qualitative or quantitative requirement based on ecological boundaries is difficult, although trophic level seems to be a better predictor even if several exceptions exist. Thus caution must be exerted when assuming the qualitative or quantitative taurine requirement in a given species. Additionally, a number of studies highlight changes in the quantitative requirement between life stages, particularly in larval stages. If knowledge of taurine functions and potential technological uses in larval stages is limited compared to juvenile stages, it is even scarcer in reproducing broodstocks. Consequently, the first part of this paper reviews the current understanding of the species- and life stage-dependent differences in in taurine function and requirement levels. In a second part, initial experimental results obtained in California yellowtail Seriola lalandi and Florida pompano Trachinotus carolinus broodstocks are presented. While the crucial importance of essential fatty acid in egg quality and overall reproduction performances needs no additional proof, results highlight the importance of proteins as well. In this context, not only were the total amount of protein and amino acid levels correlated with hatching success, but results also suggest the relationship between urea cycle and survival to 1st feeding in the newly hatched larvae.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahokas, R.A.and Sorg, G., 1977. The effect of salinity and temperature on intracellular osmoregulation and muscle free amino acids in Fundulus diaphanus. Comparative Biochemistry and Physiology Part A: Physiology 56 (1), 101-105.

Aragao, C., Conceicao, L.E.C., Dinis, M.T., Fyhn, H.-J., 2004. Amino acid pools of rotifers and Artemia under different conditions: nutritional implications for fish larvae. Aquaculture 234 (1-4), 429-445.

Assem, H.and Hankf, W., 1979. Volume regulation of muscle cells in the euryhaline teleost, Tilapia mossambica. Comparative Biochemistry and Physiology - Part A: Physiology 64 (1), 17-23.

Bañuelos-Vargas, I., López, L.M., Pérez-Jiménez, A., Peres, H., 2014. Effect of fishmeal replacement by soy protein concentrate with taurine supplementation on hepatic intermediary metabolism and antioxidant status of totoaba juveniles (Totoaba macdonaldi). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 170 (0), 18-25.

Chadwick, T.D.and Wright, P.A., 1999. Nitrogen excretion and expression of urea cycle enzymes in the Atlantic cod (Gadus morhua L.): A comparison of early life stages with adults. Journal of Experimental Biology 202 (19), 2653-2662.

Chatzifotis, S., Polemitou, I., Divanach, P., Antonopoulou, E., 2008. Effect of dietary taurine supplementation on growth performance and bile salt activated lipase activity of common dentex, Dentex dentex, fed a fish meal/soy protein concentrate-based diet. Aquaculture 275 (1-4), 201-208.

Conceicao, L.E.C., Meeren, T.d., Verreth, J.A.J., Evjen, M.S., Houlihan, D.F., Fyhn, H.J., 1997. Amino acid metabolism and protein turnover in larval turbot (Scophthalmus maximus) fed natural zooplankton or Artemia. Marine Biology 129 (2), 255-265.

Cruzado, I.H., Rodríguez, E., Herrera, M., Lorenzo, A., Almansa, E., 2013. Changes in lipid classes, fatty acids, protein and amino acids during egg development and yolk-sac larvae stage in brill (Scophthalmus rhombusL.). Aquaculture Research 44 (10), 1568-1577.

Das, J., Roy, A., Sil, P.C., 2012. Mechanism of the protective action of taurine in toxin and drug induced organ pathophysiology and diabetic complications: a review. Food & Function 3 (12), 1251-1264.

Espe, M., Ruohonen, K., El-Mowafi, A., 2012a. Effect of taurine supplementation on the metabolism and body lipid-to-protein ratio in juvenile Atlantic salmon (Salmo salar). Aquaculture Research 43 (3), 349-360.

Salze, G. et. al. 2015. Advances in Understanding of Taurine Functions in Fishes Across Species and Life Stages. En: Cruz-Suárez, L.E.,

Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., Rivas Vega, M. y Miranda Baeza, A. (Eds),

Nutrición Acuícola: Investigación y Desarrollo, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México,

ISBN 978-607-27-0593-7,pp. 324-352.

Espe, M., Ruohonen, K., El-Mowafi, A., 2012b. Hydrolysed fish protein concentrate (FPC) reduces viscera mass in Atlantic salmon (Salmo salar) fed plant-protein-based diets. Aquaculture Nutrition 18 (6), 599-609.

Espe, M.and Holen, E., 2013. Taurine attenuates apoptosis in primary liver cells isolated from Atlantic salmon (Salmo salar). British Journal of Nutrition 110 (1), 20-28.

FAO, 2015. Fisheries and Aquaculture Department - Online Query Panels. Available at http://www.fao.org/fishery/topic/16140/en.

Goldberg, A.A.and Jefferies, H.S., 1946. Potentiation of insulin hypoglycaemia by nicotinyl taurine (b-nicotinamidoethanesulphonic acid). Quarterly Journal of Pharmacy and Pharmacology 19 (1), 48-53.

Hastey, R., Phelps, R., Davis, A., Cummins, K., 2015. Augmentation of free amino acids in eggs of red snapper, Lutjanus campechanus as part of the induced spawning protocol. Aquaculture Research 46 (2), 283-290.

Helland, S., Terjesen, B.F., Berg, L., 2003. Free amino acid and protein content in the planktonic copepod Temora longicornis compared to Artemia franciscana. Aquaculture 215 (1-4), 213-228.

Huxtable, R.J., 1992. Physiological actions of taurine. Physiological Reviews 72 (1), 101-163.

Ito, T., Schaffer, S.W., Azuma, J., 2012. The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42 (5), 1529-1539.

Jell, J., Merali, S., Hensen, M.L., Mazurchuk, R., Spernyak, J.A., Diegelman, P., Kisiel, N.D., Barrero, C., Deeb, K.K., Alhonen, L., Patel, M.S., Porter, C.W., 2007. Genetically Altered Expression of Spermidine/Spermine N1-Acetyltransferase Affects Fat Metabolism in Mice via Acetyl-CoA. Journal of Biological Chemistry 282 (11), 8404-8413.

Jia, Y.D., Meng, Z., Liu, X.F., Lei, J.L., 2014. Biochemical composition and quality of turbot (Scophthalmus maximus) eggs throughout the reproductive season. Fish Physiology and Biochemistry 40 (4), 1093-1104.

Kim, S.-K., Takeuchi, T., Yokoyama, M., Murata, Y., Kaneniwa, M., Sakakura, Y., 2005. Effect of dietary taurine levels on growth and feeding behavior of juvenile Japanese flounder Paralichthys olivaceus. Aquaculture 250 (3-4), 765-774.

Kim, S.J., Ramesh, C., Gupta, H., Lee, W., 2007. Taurine-diabetes interaction: from involvement to protection. Journal of Biological Regulators and Homeostatic Agents 21 (3-4), 63-77.

Lazo, J.P., Davis, D.A., Arnold, C.R., 1998. The effects of dietary protein level on growth, feed efficiency and survival of juvenile Florida pompano (Trachinotus carolinus). Aquaculture 169 (3-4), 225-232.

Levine, S., Franki, N., Hays, R.M., 1973. A Saturable, Vasopressin-Sensitive Carrier for Urea and Acetamide in the Toad Bladder Epithelial Cell. The Journal of Clinical Investigation 52 (8), 2083-2086.

Salze, G. et. al. 2015. Advances in Understanding of Taurine Functions in Fishes Across Species and Life Stages. En: Cruz-Suárez, L.E.,

Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., Rivas Vega, M. y Miranda Baeza, A. (Eds),

Nutrición Acuícola: Investigación y Desarrollo, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México,

ISBN 978-607-27-0593-7,pp. 324-352.

Lunger, A.N., McLean, E., Gaylord, T.G., Kuhn, D., Craig, S.R., 2007. Taurine supplementation to alternative dietary proteins used in fish meal replacement enhances growth of juvenile cobia (Rachycentron canadum). Aquaculture 271 (1-4), 401-410.

Ma, Z., Qin, J.G., Hutchinson, W., Chen, B.N., 2013. Food consumption and selectivity by larval yellowtail kingfish Seriola lalandi cultured at different live feed densities. Aquaculture Nutrition 19 (4), 523-534.

Main, K.L., Rhody, N., Nystrom, M., Resley, M., 2007. Species profile - Florida pompanoSRAC Publication, 7206, pp. 6.

Matsunari, H., Hamada, K., Mushiake, K., Takeuchi, T., 2006. Effects of taurine levels in broodstock diet on reproductive performance of yellowtail Seriola quinqueradiata. Fisheries Science 72 (5), 955-960.

Maturo, J.and Kulakowski, E.C., 1988. Taurine binding to the purified insulin receptor. Biochemical Pharmacology 37 (19), 3755-3760.

Moran, D., Gara, B., Wells, R.M.G., 2007. Energetics and metabolism of yellowtail kingfish (Seriola lalandi Valenciennes 1833) during embryogenesis. Aquaculture 265 (1-4), 359-369.

Pinto, W., Rønnestad, I., Jordal, A.-E., Gomes, A., Dinis, M., Aragão, C., 2011. Cloning, tissue and ontogenetic expression of the taurine transporter in the flatfish Senegalese sole (Solea senegalensis). Amino Acids, 1-11.

Qi, G., Ai, Q., Mai, K., Xu, W., Liufu, Z., Yun, B., Zhou, H., 2012. Effects of dietary taurine supplementation to a casein-based diet on growth performance and taurine distribution in two sizes of juvenile turbot (Scophthalmus maximus L.). Aquaculture 358-359, 122-128.

Ribeiro, R.A., Vanzela, E.C., Oliveira, C.A.M., Bonfleur, M.L., Boschero, A.C., Carneiro, E.M., 2010. Taurine supplementation: involvement of cholinergic/phospholipase C and protein kinase A pathways in potentiation of insulin secretion and Ca2+ handling in mouse pancreatic islets. British Journal of Nutrition 104 (8), 1148-1155.

Roo, J., Fernández-Palacios, H., Hernández-Cruz, C.M., Mesa-Rodriguez, A., Schuchardt, D., Izquierdo, M., 2014. First results of spawning and larval rearing of longfin yellowtail Seriola rivoliana as a fast-growing candidate for European marine finfish aquaculture diversification. Aquaculture Research 45 (4), 689-700.

Rossi Jr, W.and Davis, D.A., 2012. Replacement of fishmeal with poultry by-product meal in the diet of Florida pompano Trachinotus carolinus L. Aquaculture 338–341 (0), 160-166.

Salze, G., Craig, S.R., Smith, B.H., Smith, E.P., McLean, E., 2011. Morphological development of larval cobia Rachycentron canadum and the influence of dietary taurine supplementation. Journal of Fish Biology 78 (5), 1470-1491.

Salze, G. et. al. 2015. Advances in Understanding of Taurine Functions in Fishes Across Species and Life Stages. En: Cruz-Suárez, L.E.,

Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., Rivas Vega, M. y Miranda Baeza, A. (Eds),

Nutrición Acuícola: Investigación y Desarrollo, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México,

ISBN 978-607-27-0593-7,pp. 324-352.

Salze, G., McLean, E., Craig, S.R., 2012a. Dietary taurine enhances growth and digestive enzyme activities in larval cobia. Aquaculture 362–363, 44-49.

Salze, G., McLean, E., Craig, S.R., 2012b. Pepsin ontogeny and stomach development in larval cobia. Aquaculture 324-325, 315-318.

Salze, G.P., Spangler, E., Cobine, P.A., Rhodes, M.A., Davis, D.A., 2014. Investigation of biomarkers of taurine deficiency in florida pompano Trachinotus carolinus. Aquaculture America 2014, Seattle, WA, Feb 11th.

Salze, G.P.and Davis, D.A., 2015. Taurine: a critical nutrient for future fish feeds. Aquaculture 437, 215-229.

Salze, G.P., Spangler, E., Cobine, P.A., Rhodes, M.A., Davis, D.A., Aquaculture, Submitted. Investigation of biomarkers of early taurine deficiency in Florida pompano Trachinotus carolinus.

Shelar, G.S., Shelar, P., Singh, H., Shirdhankar, M.M., Shingare, P.E., Kulkarni, G.N., 2014. Effect of Dietary Protein and Lipid Levels on the Reproductive Performance and Body Composition of Angelfish, Pterophyllum scalare (Schultze, 1823). Israeli Journal of Aquaculture-Bamidgeh 66, 7.

Shields, R.J., Bell, J.G., Luizi, F.S., Gara, B., Bromage, N.R., Sargent, J.R., 1999. Natural copepods are superior to enriched Artemia nauplii as feed for halibut larvae (Hippoglossus hippoglossus) in terms of survival, pigmentation and retinal morphology: Relation to dietary essential fatty acids. Journal of Nutrition 129 (6), 1186-1194.

Stuart, K.R.and Drawbridge, M.A., 2011. The effect of light intensity and green water on survival and growth of cultured larval California yellowtail (Seriola lalandi). Aquaculture 321 (1-2), 152-156.

Stuart, K.R.and Drawbridge, M.A., 2013. Captive spawning and larval rearing of California yellowtail (Seriola lalandi). Aquaculture Research 44 (5), 728-737.

Takagi, S., Murata, H., Goto, T., Hayashi, M., Hatate, H., Endo, M., Yamashita, H., Ukawa, M., 2006. Hemolytic suppression roles of taurine in yellowtail Seriola quinqueradiata fed non-fishmeal diet based on soybean protein. Fisheries Science 72 (3), 546-555.

Takagi, S., Murata, H., Goto, T., Hatate, H., Endo, M., Yamashita, H., Miyatake, H., Ukawa, M., 2011. Role of taurine deficiency in inducing green liver symptom and effect of dietary taurine supplementation in improving growth in juvenile red sea bream Pagrus major fed non-fishmeal diets based on soy protein concentrate. Fisheries Science 77 (2), 235-244.

Takeuchi, K., Toyohara, H., Kinoshita, M., Sakaguchi, M., 2000a. Ubiquitous increase in taurine transporter mRNA in tissues of tilapia (Oreochromis mossambicus) during high-salinity adaptation. Fish Physiology and Biochemistry 23 (2), 173-182.

Takeuchi, K., Toyohara, H., Sakaguchi, M., 2000b. A hyperosmotic stress-induced mRNA of carp cell encodes Na+- and Cl--dependent high affinity taurine transporter. Biochimica Et Biophysica Acta-Biomembranes 1464 (2), 219-230.

Salze, G. et. al. 2015. Advances in Understanding of Taurine Functions in Fishes Across Species and Life Stages. En: Cruz-Suárez, L.E.,

Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., Rivas Vega, M. y Miranda Baeza, A. (Eds),

Nutrición Acuícola: Investigación y Desarrollo, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México,

ISBN 978-607-27-0593-7,pp. 324-352.

Tsuboyama-Kasaoka, N., Shozawa, C., Sano, K., Kamei, Y., Kasaoka, S., Hosokawa, Y., Ezaki, O., 2006. Taurine (2-aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity. Endocrinology 147 (7), 3276-3284.

Wright, P., Felskie, A., Anderson, P., 1995. Induction of ornithine-urea cycle enzymes and nitrogen metabolism and excretion in rainbow trout (Oncorhynchus mykiss) during early life stages. The Journal of Experimental Biology 198 (1), 127-135.

Yang, H.J., Tian, L.X., Huang, J.W., Liang, G.Y., Liu, Y.J., 2013. Dietary taurine can improve the hypoxia-tolerance but not the growth performance in juvenile grass carp Ctenopharyngodon idellus. Fish Physiology and Biochemistry 39 (5), 1071-1078.

Yun, B.A., Ai, Q.H., Mai, K.S., Xu, W., Qi, G.S., Luo, Y.W., 2012. Synergistic effects of dietary cholesterol and taurine on growth performance and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed high plant protein diets. Aquaculture 324, 85-91.

Zarate, J.M.and Bradley, T.M., 2007. Molecular cloning and characterization of the taurine transporter of Atlantic salmon. Aquaculture 273 (2-3), 209-217.

Descargas

Publicado

2015-11-30

Cómo citar

P. Salze, G., Davis, D. A., Resley, M., Rhody, N., Maine, K., Stuart, K., & Drawbridge, M. (2015). Advances in Understanding of Taurine Functions in Fishes Across Species and Life Stages. Avances En Nutrición Acuicola. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/50