Control and Efficiency of Digestive Function of Marine Fish Larvae

Autores/as

  • Ivar Rønnestad University of Bergen

Palabras clave:

digestive function, cholecystokinin, absorption, amino acids, marine fish larvae

Resumen

Recent downscaling and improvements of tube feeding techniques have allowed more detailed
studies on the digestive and absorptive efficiency of larval fish, including the transfer kinetics
of selected nutrients from the lumen of the digestive tract into the tissues of the body. Freely
dissolved amino acids seem to be absorbed rapidly and with a high efficiency. There has also
been some progress towards understanding how the digestive process is controlled in marine
fish larvae. The peptide hormone cholecystokinin (CCK) has been targeted since it is believed
to play an important role in controlling digestive function in vertebrates.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aldman, G., Grove, D., Holmgren, S., 1992. Duodenal acidification and intra-arterial injection of CCK-8 increase

gallbladder motility in the rainbow trout, Oncorhynchus mykiss. Gen Comp. Endocrinol. 86: 20-25

Aldman, G., Holmgren, S., 1987. Control of gallbladder motility in the rainbow trout, Salmo gairdneri. Fish

Physiol. Biochem. 4: 143-155

Andrews, P. O. L. R., Young, J. Z., 1988. The effect of peptides on the motility of the stomach intestine, intestine

and rectum in the skate (Raja). Comp. Biochem. Physiol. C 89: 343-348

Barrenechea, M. A., Lopez, J., Martinez, A., 1994. Regulatory peptides in gastric endocrine cells of the rainbow

trout Oncorhynchus mykiss: general distribution and colocalizations. Tissue Cell. 26(3): 309-21.

Berge, G. E., Lied, E., Espe, M., 1994. Absorption and incorporation of dietary free and protein bound (U14C)-

lysine in Atlantic cod (Gadus morhua ). Comp. Biochem. Physiol. 109A, 681-688.

Cahu, C. L., Zambonino Infante, J. L., 1995a. Effect of the molecular form of dietary nitrogen supply in sea bass

larvae: Response of pancreatic enzymes and intestinal peptidases. Fish Physiol Biochem 14: 209-214

Cahu, C. L., Zambonino Infante, J. L. 1995b. Maturation of the pancreatic and intestinal digestive functions in

sea bass (Dicentrarchus labrax): effect of weaning with different protein sources. Fish Physiol

Biochem 14: 431-437

Cahu, C. L., Zambonino Infante, J. L., 2001. Substitution of live food by formulated diets in marine fish larvae.

Aquaculture 200, 161-180.

Conceição, L. E. C., Rønnestad, I., Tonheim, S. K., 2002a. Metabolic budgets for lysine and glutamate in unfed

herring (Clupea harengus) larvae. Aquaculture. 206, 305-312

Conceição, L. E. C, Grasdalen, H., Rønnestad, I., 2002b. Amino acid requirements of fish larvae and post-larvae:

new tools and recent findings. Aquaculture (in press)

Einarsson, S., Davies, P. S., Talbot, C., 1997. Effect of exogenous cholecystokinin on the discharge of the

gallbladder and the secretion of trypsin and chymotrypsin from the pancreas of the Atlantic salmon,

Salmo salar L. Comp. Biochem. Physiol. C 117C, 63-67.

Espe, M., Lied, E., Torrissen, K. R., 1993. Changes in plasma and muscle free amino acids in Atlantic salmon

(Salmo salar) during absorption of diets containing different amounts of hydrolysed cod muscle

protein. Comp. Biochem. Physiol A 105, 555-562.

Espe, M., Sveier, H., Høgøy, I., Lied, E., 1999. Nutrient absorption and growth of Atlantic salmon (Salmo salar

L.) fed fish protein concentrate. Aquaculture 174, 119-137.

Fernàndez-Diaz, C., Yùfera, M., 1997. Detecting growth in gilthead seabream, Sparus aurata L.; larvae fed

microcapsules. Aquaculture 153, 193-102.

Finn, R.N., Fyhn, H.J., Henderson, R.J., Evjen, M.S., 1995a. Physiological energetics of developing embryos and

yolk-sac larvae of Atlantic cod (Gadus morhua). I. Respiration and nitrogen metabolism. Mar. Biol.

, 355-369.

Finn, R.N., Rønnestad, I., Fyhn, H.J., 1995b. Respiration, nitrogen and energy metabolism of developing yolksac

larvae of Atlantic halibut (Hippoglossus hippoglossus L.). Comp. Biochem. Physiol. [A] 111, 647-

Finn, R. N., Widdows, J., Fyhn, H. J., 1995c. Calorespirometry of developing embryos and yolk-sac larvae of

turbot (Scophthalmus maximus). Mar. Biol. 122, 157-163.

Fyhn, H. J., 1989. First feeding of marine fish larvae: Are free amino acids the source of energy? Aquaculture,

, 111-120.

Fyhn, H. J., 1990. Energy productin in marine fish larvae with emphasis on free amino acids as a potential fuel.

In: Mellinger, J. (ed.) Comparative physiology. Animal nutrition and transport processes. 1. Nutrition

in wild and domestic animals. Vol. 5. Karger, Basel. pp. 176-192.

Grendell, J. H., Rothman, S.S., 1981. Digestive end products mobilize secretory proteins from subcellular stores

in the pancreas. Am. J. Physiol. 241, G67-G73.

Holmgren, S., Holmberg, A., Fritsche, R., Pelster, B., Schwerte, T., 2001. Control of gut motility in larval fish

and amphibians. Second Int. Conf. Comp. Physiol. Biochem. in Africa. How Animals Work. Chobe

National Park, Botswana, Aug 18-24, 2001.

Kamisaka, Y., Kurokawa, T., Suzuki, T., Tagawa, M., Tanaka, M., Totland, G.K., Rønnestad, I., 2001. Ontogeny

of cholecystokinin producing cells in Atlantic halibut (Hippoglossus hippoglossus) larvae. Gen. Comp.

Endocrinol. 123, 31-37.

Kamisaka, Y., Kurokawa, K., Suzuki, T., Totland, G. K., Rønnestad, I., Tagawa, M., Tanaka, M. 2002a.

Ontogenetic appearance and distribution of the digestive hormone cholecystokinin (CCK) in fish. Fish.

Sci. (in press)

Kamisaka, Y., Kaji, T., Masuma, S., Tezuka, N., Kurokawa, T., Suzuki, T., Totland, G. K., Rønnestad, I.,

Tagawa, M., Tanaka, M., 2002b. Ontogeny of cholecystokinin - immunoreactive cells in the digestive

tract of bluefin tuna, Thunnas thynnus, larvae. Sarsia (in press)

Kolkovski, S., 2001. Digestive enzymes in fish larvae and juveniles - implications and applications to formulated

diets. Aquaculture 200, 181-200.

Koven, W., Kolkovski, S., Hadas, E., Gamsiz, K.T.A., 2001. Advances in the development of microdiets for

gilthead seabream, Sparus aurata: a review. Aquaculture 194, 107-121.

Koven, W., Rojas-García, C. R., Finn, R. N., Tandler, A., Rønnestad, I., 2002. The stimulatory effect of ingested

protein and/or free amino acids on the secretion of the gastro-endocrine hormone, cholecystokinin

(CCK) and the protease, trypsin, in first feeding herring larvae, Clupea harengus. Marine Biology.

: 1241-1247.

Kurokawa, T., Suzuki, T., Andoh, T., 2000. Development of cholecystokinin and pancreatic polypeptide

endocrine systems during the larval stage of Japanese flounder, Paralichthys olivaceus. Gen Comp.

Endocrinol. 120(1): 8-16.

Lazo, J. P., Dinis, M. T., Holt, J. G., Faulk, C., Arnold, C.R., 2000. Co-feeding microparticulate diets with algae:

towards eliminating the need of zooplankton at first feeding red drum (Sciaenops ocellatus).

Aquaculture 188, 339-351.

Liddle, R. A., 1994a. Regulation of cholecystokinin gene-expression in rat intestine. Ann. New York Acad. Sci.

, 2-31

Liddle, R. A., 1994b. Regulation of cholecystokinin synthesis and secretion in rat intestine. J. Nutr. 124, S1308-

S1314

Liddle, R. A., 1995. Regulation of cholecystokinin secretion by intraluminal releasing factors. Am. J. Physiol.

(Gastrointest. Liver Physiol 32): G319-G327

Liddle, R. A., 2000. Regulation of cholecystokinin secretion in humans. J. Gastroenterol. 35, 181-187

Metges, C. C., ElKhoury, A. E., Selvaraj, A. B., Tsay, R. H., Atkinson, A., Regan, M. M., Bequette, B. J.,

Young, V. R., 2000. Kinetics of L-[1-C-13]leucine when ingested with free amino acids, unlabeled or

intrinsically labeled casein. Am. J. Physiol.-endocrinol. Metabol. 278, E1000-E1009.

Ng, W. K., Hung, S. S. O., Herold, M. A., 1996. Poor utilization of dietary free amino acids by white sturgon.

Fish Physiol. Biochem. 15, 131-142.

Olsson, C., Aldman, G., Larsson, A., Holmgren, S., 1999. Cholecystokinin affects gastric emptying and stomach

motility in the rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 202, 160-170.

Owyang, C., 1994. Negative feedback-control of exocrine pancreatic-secretion - role of cholecystokinin and

cholinergic pathway. J. Nutr. 124, S1321-S1326

Rajjo, I. M., Vigna, S. R., Crim, J. W., 1988. Actions of cholecystokinin-related peptides on the gallbladder of

bony fishes in vitro. Comp. Biochem. Physiol. C 90: 267-273

Rojas-García, C. R., 2002. Intestinal function in marine fish larvae: Digestion and absorption of proteins and

amino acids; efficiency and relation to cholecystokinin and trypsin. Dr. Thesis, University of Bergen,

Bergen Norway

Rojas-García, C. R., Rønnestad, I., Ueberschäer, B., 2001. Combined sensitive analytical methods for

cholecystokinin levels and tryptic activity in individual fish larvae. J. Exp. Mar. Biol. Ecol. 265, 101-

Rojas-García, C. R. Rønnestad, I., 2002a. Cholecystokinin and tryptic activity in the gut of developing Atlantic

halibut (Hippoglossus hippoglossus): evidence for participation in the regulation of protein digestion.

J. Fish Biol. (in press)

Rojas-García, C.R., Rønnestad, I., 2002b. Assimilation of dietary free amino acids, peptides and protein in postlarval

Atlantic halibut (Hippoglossus hippoglossus). Marine Biology. DOI 10.1007/s002270100675.

Published online ( in press)

Rombout, J. H., Taverne-Thiele, J. J., 1982. An immunocytochemical and electron-microscopical study of

endocrine cells in the gut and pancreas of a stomachless teleost fish, Barbus conchonius

(Cyprinidae).Cell.Tissue Res. 227(3): 577-93.

Rønnestad, I., Fyhn, H. J., 1993. Metabolic aspects of free amino acids in developing marine fish eggs and larvae.

Rev. Fish. Sci. 1, 239-259.

Rønnestad, I., Finn, R. N., Groot, E. P., Fyhn, H. J., 1992a. Utilization of free amino acids related to energy

metabolism of developing eggs and larvae of lemon sole Microstomus kitt reared in the laboratory.

Mar. Ecol. Progr. Ser. 88, 195-205.

Rønnestad, I., Fyhn, H. J., Gravningen, K., 1992b. The importance of free amino acids to the energy metabolism

of eggs and larvae of turbot (Scophthalmus maximus). Mar. Biol. 114, 517-525.

Rønnestad, I., Koven, W. M., Tandler, A., Harel, M., Fyhn, H. J., 1994. Energy metabolism during development

of eggs and larvae of gilthead sea bream (Sparus aurata). Mar. Biol. 120, 187-196.

Rønnestad, I., Thorsen, A., Finn, R.N., 1999. Fish larval nutrition: Recent advances in amino acid metabolism.

Aquaculture 177, 201-216.

Rønnestad, I., Conceição, L. E. C., Aragão, C., Dinis, M. T., 2000a. Free amino acids are absorbed faster and

assimilated more efficiently than protein in postlarval Senegal sole (Solea senegalensis). J. Nutr. 130,

-2812.

Rønnestad, I., Peréz Dominguez, R., Tanaka, M., 2000b. Ontogeny of digestive tract functionality in Japanese

flounder, Paralichthys olivaceus studied by in vivo microinjection: pH and assimilation of free amino

acids. Fish Physiol. Biochem. 22, 225-235.

Rønnestad, I., Rojas-Garcia, C. R., Skadal, J., 2000c. Retrograde peristalsis, a possible mechanism for filling the

pyloric cecae? J. Fish Biol. 56, 216-218.

Rønnestad, I., Rojas-García, C. R., Tonheim, S. K., Conceição, L. E. C., 2001a. In vivo studies of digestion and

nutrient assimilation in marine fish larvae. Aquaculture 201, 161-175.

Rønnestad, I., Conceição, L. E. C., Aragão, C., Dinis, M. T., 2001b. Assimilation and catabolism of dispensable

and indispensable free amino acids in post-larval Senegal sole (Solea senegalensis). Comp. Biochem.

Physiol.C. 130: 461-466

Rønnestad, I., Tonheim, S. K., Fyhn, H. J., Rojas-García, C.R., Kamisaka, Y., Koven, W., Finn, R. N., Terjesen,

B. F., Barr, Y., Conceição, L. E. C., 2002. The supply of amino acids during early feeding stages of

marine fish larvae: A review of recent findings. Aquaculture (in press)

Rust, M. B., 1995 Quantitative aspects of nutrient assimilation in six species of fish larvae. Dr. Thesis. School of

Fisheries: University of Washington, USA.

Rust, M. B., Hardy, R. W., Stickney, R. R., 1993. A new method for force-feeding larval fish. Aquaculture 116,

-352.

Terjesen, B. F., Finn, R. N., Norberg, B., Rønnestad, I., 2002. Kinetics and fates of ammonia, urea, and uric acid

during oocyte maturation and ontogeny of Atlantic halibut (Hippoglossus hippoglossus). Comp.

Biochem. Physiol. A 131: 443-455.

Terjesen, B. F., Rønnestad, I., Norberg, B., Anderson, P. M., 2000. Detection and basic properties of carbamoyl

phosphate synthetase III during teleost ontogeny: a case study in the Atlantic halibut (Hippoglossus

hippoglossus L.). Comp. Biochem. Physiol. [B] 126, 521-535.

Yamada, S., Simpson, K. L., Tanaka, Y., Katayama, T., 1981. Plasma amino acid changes in rainbow trout

(Salmo gairdneri) force-fed casein and a corresponding amino acid mixture. Bull. Jap. Soc. Sci. Fish.

, 1035-1040.

Yoshida, K., Iwanaga, T., Fujita, T. 1983. Gastro-entero-pancreatic (GEP) endocrine system of the flatfish,

Paralichtys olivaceus: an immunocytochemical study. Arch. Histol. Jpn. 46(2): 259-66.

Descargas

Cómo citar

Rønnestad, I. (2019). Control and Efficiency of Digestive Function of Marine Fish Larvae. Avances En Nutrición Acuicola. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/234