Proteínas y péptidos de residuos líquidos pesqueros: Obtención, bioactividad y uso en la alimentación acuícola

Autores/as

  • Emmanuel Martínez Montaño Universidad Politécnica de Sinaloa
  • Jesús Aarón Salazar Leyva Universidad Politécnica de Sinaloa
  • Idalia Osuna Ruíz

Palabras clave:

Efluentes pesqueros; Hidrólisis enzimática; Propiedades bioactivas; Recuperación proteica; Suplemento alimenticio

Resumen

La industria procesadora de productos pesqueros, derivado de sus actividades productivas, genera una importante cantidad de residuos líquidos, los cuales son comúnmente conocidos como efluentes pesqueros. Muchos de estos efluentes, son descargados al medio ambiente sin recibir algún tratamiento, generando un impacto negativo en los cuerpos de agua y zonas costeras donde son vertidos. Por otro lado, estudios han determinado que estos efluentes poseen concentraciones importantes de materia sólida, principalmente proteínas. Dicha proteína es de alta calidad considerando su perfil de aminoácidos, por lo cual es de interés emplear tecnologías para poder concentrarlas y recuperarlas. Una vez recuperada la fracción proteica de los efluentes pesqueros, a partir de esta se pueden obtener productos con alto valor agregado (p.ej. hidrolizados proteicos y péptidos bioactivos) aplicando tecnología enzimática. Las aplicaciones de estos nuevos productos en la industria alimentaria (humana o animal), pueden ser amplias y de importante valor económico. En esta revisión, se discutirá lo relacionado a alternativas de aprovechamiento de los efluentes generados en la industria pesquera, enfocándose en la recuperación y la utilización de fracciones proteicas. Se incluyen algunas técnicas empleadas para su obtención, mencionando sus ventajas y requerimientos; así como las propiedades tecno-funcionales y biológicas de las proteínas o sus hidrolizados proteicos obtenidos a partir de los efluentes pesqueros, y finalmente, se discutirá los usos y aplicaciones de efluentes pesqueros y sus hidrolizados como reemplazo de harina de pescado para la formulación de alimentos acuícolas, lo cual acarrea ventajas sobre el desempeño productivo y/o sobre distintos indicadores de la salud de los organismos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Amado, I. R., González, M. P., Murado, M. A., & Vázquez, J. A. (2016). Shrimp wastewater as a source of astaxanthin and bioactive peptides. Journal of Chemical Technology & Biotechnology, 91(3), 793-805.

Amado, I. R., Vázquez, J. A., González, P., Esteban-Fernández, D., Carrera, M., & Piñeiro, C. (2014). Identification of the major ACE-inhibitory peptides produced by enzymatic hydrolysis of a protein concentrate from cuttlefish wastewater. Marine Drugs, 12(3), 1390-1405.

Amado, I. R., Vázquez, J. A., González, M. P., & Murado, M. A. (2013). Production of antihypertensive and antioxidant activities by enzymatic hydrolysis of protein concentrates recovered by ultrafiltration from cuttlefish processing wastewaters. Biochemical Engineering Journal, 76, 43-54.

Aanand, S., Divya, M., Deepak, T., Padmavathi, P., & Manimekalai, D. (2017). Review on seafood processing plant wastewater bioremediation–A potential tool for waste management. International Journal of Applied Research, 3(7), 01-04.

Bello-Bugallo, P. M., Stupak, A., Andrade, L. C., & López, R. T. (2012). Material Flow Analysis in a cooked mussel processing industry. Journal of Food Engineering, 113(1), 100-117.

Bethi, C. M., Narayan, B., Martin, A., & Kudre, T. G. (2020). Recovery, physicochemical and functional characteristics of proteins from different meat processing wastewater streams. Environmental Science and Pollution Research, 27(20), 25119-25131.

Bruno, S. F., Ekorong, F. J. A. A., Karkal, S. S., Cathrine, M. S. B., & Kudre, T. G. (2019). Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends in Food Science & Technology, 85, 10-22.

Calabrò, V., & Basile, A. (2011). Fundamental membrane processes, science and engineering Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications (pp. 3-21): Elsevier.

Estévez, A., Blanco, B., Fernández, L., Ferreira, M., & Soula, M. (2022). Effects of alternative and sustainable ingredients, insect meal, microalgae and protein and lipid from tuna cooking water, on meagre (Argyrosomus regius) growth, food conversion and muscle and liver composition. Aquaculture, 548, 737549.

FAO. 2020. El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. Roma.

Fahim, F. A., Fleita, D. H., Ibrahim, A. M., & El-Dars, F. M. (2001). Evaluation of some methods for fish canning wastewater treatment. Water, Air, and Soil Pollution, 127(1), 205-226.

Forghani, B., Bordes, R., Ström, A., & Undeland, I. (2020). Recovery of a protein-rich biomass from shrimp (Pandalus borealis) boiling water: a colloidal study. Food chemistry, 302, 125299.

Girgih, A. T., He, R., Hasan, F. M., Udenigwe, C. C., Gill, T. A., & Aluko, R. E. (2015). Evaluation of the in vitro antioxidant properties of a cod (Gadus morhua) protein hydrolysate and peptide fractions. Food Chemistry, 173, 652-659.

Gómez, M. T., Iglesias, A. M., López, R. T., & Bugallo, P. B. (2016). Towards sustainable systems configurations: application to an existing fish and seafood canning industry. Journal of Cleaner Production, 129, 374-383.

Greyling, N., Bordoloi, A., & Goosen, N. J. (2020). Optimising enzymatic conditions of monkfish (Lophius vomerinus) heads hydrolysis towards potential waste biomass valorisation. Biomass Conversion and Biorefinery, 1-12. https://doi.org/10.1007/s13399-020-00650-z

Hung, C. C., Yang, Y. H., Kuo, P. F., & Hsu, K. C. (2014). Protein hydrolysates from tuna cooking juice inhibit cell growth and induce apoptosis of human breast cancer cell line MCF-7. Journal of Functional Foods, 11, 563-570.

Jao, C.-L., & Ko, W.-C. (2002). 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging by protein hydrolyzates from tuna cooking juice. Fisheries Science, 68(2), 430-435.

Kasiwut, J., Youravong, W., & Sirinupong, N. (2019). Angiotensin I‐converting enzyme inhibitory peptides produced from tuna cooking juice hydrolysate by continuous enzymatic membrane reactor. Journal of Food Biochemistry, 43(12), e13058.

Kousoulaki, K., Albrektsen, S., Langmyhr, E., Olsen, H.J., Campbell, P. & Aksnes, A. (2009). The water soluble fraction in fish meal (stickwater) stimulates growth in Atlantic salmon (Salmo salar L.) given high plant protein diets. Aquaculture, 289, 74-83.

Kumar, P., Sharma, N., Ranjan, R., Kumar, S., Bhat, Z., & Jeong, D. K. (2013). Perspective of membrane technology in dairy industry: A review. Asian-Australasian Journal of Animal Sciences, 26(9), 1347.

Lee, J. K., Li-Chan, E. C., Jeon, J.-K., & Byun, H.-G. (Eds.). (2014). Development of functional materials from seafood by-products by membrane separation technology: Springer.

Lee, G. W., Yoon, I. S., Kang, S. I., Lee, S. G., Kim, J. I., Kim, J. S., & Heu, M. S. (2017). Functionality and biological activity of isolate processed water generated during protein isolate preparation of fish roes using an isoelectric solubilization and precipitation process. Korean Journal of Fisheries and Aquatic Sciences, 50(6), 694-706.

Mahdabi, M., & Hosseini Shekarabi, S. P. (2018). A comparative study on some functional and antioxidant properties of kilka meat, fishmeal, and stickwater protein hydrolysates. Journal of Aquatic Food Product Technology, 27(7), 844-858.

Marti-Quijal, F. J., Remize, F., Meca, G., Ferrer, E., Ruiz, M. J., & Barba, F. J. (2020). Fermentation in fish and by-products processing: An overview of current research and future prospects. Current Opinion in Food Science, 31, 9-16.

Martínez-Montaño, E., Osuna-Ruíz, I., Benítez-García, I., Osuna, C. O., Pacheco-Aguilar, R., Navarro-Peraza, R. S., ... & Salazar-Leyva, J. A. (2021a). Biochemical and antioxidant properties of recovered solids with pH shift from fishery effluents (sardine stickwater and tuna cooking water). Waste and Biomass Valorization, 12(4), 1901-1913.

Martínez-Montaño, E., Sarmiento-Machado, R. M., Benítez-García, I., Pacheco-Aguilar, R., Navarro-Peraza, R. S., Sánchez, M. E. L., ... & Leyva, J. A. S. (2021b). Effect of degree of hydrolysis on biochemical properties and biological activities (antioxidant and antihypertensive) of protein hydrolysates from Pacific thread herring (Ophistonema libertate) stickwater. Waste and Biomass Valorization, https://doi.org/10.1007/s12649-021-01590-z

Matak, K. E., Tahergorabi, R., & Jaczynski, J. (2015). A review: Protein isolates recovered by isoelectric solubilization/precipitation processing from muscle food by-products as a component of nutraceutical foods. Food Research International, 77, 697-703.

Medina Uzcátegui, L. U., Vergara, K., & Martínez Bordes, G. (2021). Sustainable alternatives for by-products derived from industrial mussel processing: A critical review. Waste Management & Research, 0734242X21996808. https://doi.org/10.1177/0734242X21996808

Mhina, C. F., Jung, H. Y., & Kim, J. K. (2020). Recovery of antioxidant and antimicrobial peptides through the reutilization of Nile perch wastewater by biodegradation using two Bacillus species. Chemosphere, 253, 126728.

Navarro-Peraza, R. S., Osuna-Ruiz, I., Lugo-Sánchez, M. E., Pacheco-Aguilar, R., Ramírez-Suárez, J. C., Burgos-Hernández, A., ... & Salazar-Leyva, J. A. (2020). Structural and biological properties of protein hydrolysates from seafood by-products: a review focused on fishery effluents. Food Science and Technology, 40, 1-5.

Pacheco-Aguilar, R., De la Barca, A. M., Castillo-Yañez, F. J., Marquéz-Ríos, E., García-Carreño, F. L., & Valdez-Hurtado, S. (2018). Comparación del efecto de dos tratamientos enzimáticos con actividad colagenasa y una centrifugación complementaria en las características fisicoquímicas del agua de cola generada por la industria sardinera. Biotecnia, 20(3), 58-64.

Pasupuleti, V. K., & Braun, S. (Eds.). (2008). State of the art manufacturing of protein hydrolysates: Springer.

Pérez-Santín, E., Calvo, M. M., López-Caballero, M. E., Montero, P., & Gómez-Guillén, M. C. (2013). Compositional properties and bioactive potential of waste material from shrimp cooking juice. LWT-Food Science and Technology, 54(1), 87-94.

Prieto, M. A., Prieto, I., Vázquez, J. A., & Ferreira, I. C. (2015). An environmental management industrial solution for the treatment and reuse of mussel wastewaters. Science of the Total Environment, 538, 117-128.

Salze, G.P. & Davis, D.A. (2015). Taurine: a critical nutrient for future fish feeds. Aquaculture, 437, 215-229.

Shi, Y., Zhong, L., Ma, X., Liu, Y., Tang, T., & Hu, Y. (2019). Effect of replacing fishmeal with stickwater hydrolysate on the growth, serum biochemical indexes, immune indexes, intestinal histology and microbiota of rice field eel (Monopterus albus). Aquaculture Reports, 15, 100223.

Tang, W., Zhang, H., Wang, L., Qian, H., & Qi, X. (2015). Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chemistry, 168, 115-123.

Taskaya, L., & Jaczynski, J. (2009). Flocculation-enhanced protein recovery from fish processing by-products by isoelectric solubilization/precipitation. LWT-Food Science and Technology, 42(2), 570-575.

Tavano, O. L. (2013). Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1-11.

Tremblay, A., Corcuff, R., Goulet, C., Godefroy, S. B., Doyen, A., & Beaulieu, L. (2020). Valorization of snow crab (Chionoecetes opilio) cooking effluents for food applications. Journal of the Science of Food and Agriculture, 100(1), 384-393.

Valdez-Hurtado, S., Goycolea-Valencia, F., & Márquez-Ríos, E. (2018). Efecto de una centrifugación complementaria en la composición química y reológica del agua de cola. Biotecnia, 20(2), 95-103.

Vázquez-Sánchez, D., Leite, S. B., Galvão, J. A., & Oetterer, M. (2021). Composition, functional properties, antioxidant activity and efficiency as bacterial growth medium of minced tilapia (Oreochromis niloticus) wash-water. Waste and Biomass Valorization, 12, 4375–4386. https://doi.org/10.1007/s12649-020-01324-7

Venugopal, V., & Sasidharan, A. (2021). Seafood industry effluents: environmental hazards, treatment and resource recovery. Journal of Environmental Chemical Engineering, 9(2), 104758.

Venugopal, V. (2021). Valorization of seafood processing discards: bioconversion and bio-refinery approaches. Frontiers in Sustainable Food Systems, 5, 132.

Wattanakul, U., Wattanakul, W., & Thongprajukaew, K. (2019). Optimal replacement of fish meal protein by stick water in diet of sex-reversed Nile tilapia (Oreochromis niloticus). Animals, 9(8), 521.

Wu, D., Zhou, L., Gao, M., Wang, M., Wang, B., He, J., ... & Pu, Q. (2018). Effects of stickwater hydrolysates on growth performance for yellow catfish (Pelteobagrus fulvidraco). Aquaculture, 488, 161-173.

Ye, A. (2008). Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications–a review. International Journal of Food Science & Technology, 43(3), 406-415.

Yoon, I. S., Lee, G. W., Kang, S. I., Park, S. Y., Kim, J. S., & Heu, M. S. (2017). Food functionality and biological activity of processed waters produced during the preparation of fish roe concentrates by cook-dried process. Korean Journal of Fisheries and Aquatic Sciences, 50(5), 506-519.

Descargas

Publicado

2022-10-12

Cómo citar

Martínez Montaño , E., Salazar Leyva, J. A., & Osuna Ruíz, I. (2022). Proteínas y péptidos de residuos líquidos pesqueros: Obtención, bioactividad y uso en la alimentación acuícola. Avances En Nutrición Acuicola, 1(1), 50–70. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/355