Application of Poly-β-hydroxybutyrate in Shrimp Health Management. Aplicación de poli- β-hydroxybutyrato en el manejo de la salud del camarón.

Autores/as

  • Riya Rajeev
  • P.S Seethalakshmi
  • George Seghal Kiran
  • Lucía Elizabeth Cruz Suárez
  • Joseph Selvin

Palabras clave:

Gut microbiome; PHB-diet; Poly-β-hydroxybutyrate; polyhydroxyalkanoates; shrimp aquaculture

Resumen

Shrimp is one of the most cultured crustacean worldwide due to its high protein and nutrient content. At the same time shrimp aquaculture faces a huge challenge in controlling disease outbreaks. The extensive use of antibiotics to combat the infectious organisms has led to the emergence of antibiotic resistance which is a huge threat to humans and other living forms. Therefore, a more environment friendly treatment strategy should be devised. One such treatment option is the use of biopolymers such as polyhydroxyalkanoates (PHAs). The most widely used PHA is the anti-infective poly-β-hydroxybutyrate which can be fermented into immune stimulating short chain fatty acids by host bacteria or digestive enzymes. PHB produced by marine microorganisms are widely studied and considered to be a good source of PHB for industrial use. PHB has been found to possess multiple benefits to shrimp health which includes immune stimulation, antibacterial properties, increased secretion of digestive enzymes and growth promotion. Moreover, PHB-diet positively influences the gut microbiome of shrimp, therefore, promoting the overall health and growth.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Anderson, A. J., & Dawes, E. A. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological reviews, 54(4), 450-472.

Arun, A., Arthi, R., Shanmugabalaji, V., & Eyini, M. (2009). Microbial production of poly-β-hydroxybutyrate by marine microbes isolated from various marine environments. Bioresource technology, 100(7), 2320-2323.

Asche, F., Anderson, J. L., Botta, R., Kumar, G., Abrahamsen, E. B., Nguyen, L. T., & Valderrama, D. (2021). The economics of shrimp disease. Journal of invertebrate pathology, 186, 107397.

Asiri, F., & Chu, K. H. (2020). A Novel Recirculating Aquaculture System for Sustainable Aquaculture: Enabling Wastewater Reuse and Conversion of Waste-to-Immune-Stimulating Fish Feed. ACS Sustainable Chemistry & Engineering, 8(49), 18094-18105. Baruah, K., Huy, T. T., Norouzitallab, P., Niu, Y., Gupta, S. K., De Schryver, P., & Bossier, P. (2015). Probing the protective mechanism of poly-ß-hydroxybutyrate against vibriosis by using gnotobiotic Artemia franciscana and Vibrio campbellii as host-pathogen model. Scientific reports, 5(1), 1-8.

Chen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chemical Society Reviews, 38(8), 2434-2446.

Chen, G. Q., & Wu, Q. (2005a). Microbial production and applications of chiral hydroxyalkanoates. Applied microbiology and biotechnology, 67(5), 592-599.

Chen, G. Q., & Wu, Q. (2005b). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26(33), 6565-6578.

Chien, C. C., Chen, C. C., Choi, M. H., Kung, S. S., & Wei, Y. H. (2007). Production of poly-β-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment. Journal of Biotechnology, 132(3), 259-263.

Cui, P., Zhou, Q. C., Huang, X. L., & Xia, M. H. (2016). Effect of dietary vitamin B6 on growth, feed utilization, health and non‐specific immune of juvenile Pacific white shrimp, Litopenaeus vannamei. Aquaculture Nutrition, 22(5), 1143-1151.

Dai, W. F., Zhang, J. J., Qiu, Q. F., Chen, J., Yang, W., Ni, S., & Xiong, J. B. (2018). Starvation stress affects the interplay among shrimp gut microbiota, digestion and immune activities. Fish & shellfish immunology, 80, 191-199.

Daniel, H., Gholami, A. M., Berry, D., Desmarchelier, C., Hahne, H., Loh, G., ... & Clavel, T. (2014). High-fat diet alters gut microbiota physiology in mice. The ISME journal, 8(2), 295-308.

De Schryver, P., Sinha, A. K., Kunwar, P. S., Baruah, K., Verstraete, W., Boon, N., ... & Bossier, P. (2010). Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Applied microbiology and biotechnology, 86(5), 1535-1541.

De Schryver, P., Sinha, A. K., Kunwar, P. S., Baruah, K., Verstraete, W., Boon, N., ... & Bossier, P. (2010). Poly-β-hydroxybutyrate (PHB) increases growth performance and intestinal bacterial range-weighted richness in juvenile European sea bass, Dicentrarchus labrax. Applied microbiology and biotechnology, 86(5), 1535-1541.

Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W., & Bossier, P. (2009). Short-chain fatty acids and poly-β-hydroxyalkanoates:(New) Biocontrol agents for a sustainable animal production. Biotechnology advances, 27(6), 680-685.

Defoirdt, T., Halet, D., Vervaeren, H., Boon, N., Van de Wiele, T., Sorgeloos, P., ... & Verstraete, W. (2007). The bacterial storage compound poly‐β‐hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environmental microbiology, 9(2), 445-452.

Defoirdt, T., Halet, D., Vervaeren, H., Boon, N., Van de Wiele, T., Sorgeloos, P., ... & Verstraete, W. (2007). The bacterial storage compound poly‐β‐hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environmental microbiology, 9(2), 445-452.

Dobrowolska, J., Zagrodzki, P., Woźniakiewicz, M., Woźniakiewicz, A., Zwolińska, M., Winnicka, D., & Paśko, P. (2016). Procedure optimization for extracting short-chain fatty acids from human faeces. Journal of pharmaceutical and biomedical analysis, 124, 337-340.

Duan, Y., Zhang, Y., Dong, H., Wang, Y., & Zhang, J. (2017). Effects of dietary poly-β-hydroxybutyrate (PHB) on microbiota composition and the mTOR signaling pathway in the intestines of Litopenaeus vannamei. journal of microbiology, 55(12), 946-954

Forchielli, M. L., & Walker, W. A. (2005). The role of gut-associated lymphoid tissues and mucosal defence. British Journal of Nutrition, 93(S1), S41-S48.

Gao, M., Du, D., Bo, Z., & Sui, L. (2019). Poly-β-hydroxybutyrate (PHB)-accumulating Halomonas improves the survival, growth, robustness and modifies the gut microbial composition of Litopenaeus vannamei postlarvae. Aquaculture, 500, 607-612.

Gopi, K., Balaji, S., & Muthuvelan, B. (2014). Isolation purification and screening of biodegradable polymer PHB producing cyanobacteria from marine and fresh water resources. Iran. J. Energy Environ, 5, 94-100.

Gowda, V., & Shivakumar, S. (2019). Novel biocontrol agents: short chain fatty acids and more recently, polyhydroxyalkanoates. In Biotechnological applications of polyhydroxyalkanoates (pp. 323-345). Springer, Singapore.

Halet, D., Defoirdt, T., Van Damme, P., Vervaeren, H., Forrez, I., Van de Wiele, T., ... & Verstraete, W. (2007). Poly-β-hydroxybutyrate-accumulating bacteria protect gnotobiotic Artemia franciscana from pathogenic Vibrio campbellii. FEMS microbiology ecology, 60(3), 363-369.

Holt, C. C., Bass, D., Stentiford, G. D., & van der Giezen, M. (2021). Understanding the role of the shrimp gut microbiome in health and disease. Journal of invertebrate pathology, 107387.

Hong, J. W., Song, H. S., Moon, Y. M., Hong, Y. G., Bhatia, S. K., Jung, H. R., ... & Yang, Y. H. (2019). Polyhydroxybutyrate production in halophilic marine bacteria Vibrio proteolyticus isolated from the Korean peninsula. Bioprocess and biosystems engineering, 42(4), 603-610.

Jiravanichpaisal, P., Lee, B. L., & Söderhäll, K. (2006). Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology, 211(4), 213-236.

Joseph, T. C., Murugadas, V., Reghunathan, D., Shaheer, P., Akhilnath, P. G., & Lalitha, K. V. (2015). Isolation and characterization of Vibrio cholerae O139 associated with mass mortality in Penaeus monodon and experimental challenge in postlarvae of three species of shrimp. Aquaculture, 442, 44-47.

Kavitha, G., Rengasamy, R., & Inbakandan, D. (2018). Polyhydroxybutyrate production from marine source and its application. International journal of biological macromolecules, 111, 102-108.

Kiran, G. S., Priyadharshini, S., Dobson, A. D., Gnanamani, E., & Selvin, J. (2016). Degradation intermediates of polyhydroxy butyrate inhibits phenotypic expression of virulence factors and biofilm formation in luminescent Vibrio sp. PUGSK8. NPJ biofilms and microbiomes, 2, 16002.

Kiran, G. S., Priyadharshini, S., Sajayan, A., Ravindran, A., Priyadharshini, G. B., Ramesh, U., ... & Selvin, J. (2020). Dietary administration of gelatinised polyhydroxybutyrate to Penaeus vannamei improved growth performance and enhanced immune response against Vibrio parahaemolyticus. Aquaculture, 517, 734773.

Kumar, B. K., Deekshit, V. K., Raj, J. R. M., Rai, P., Shivanagowda, B. M., Karunasagar, I., & Karunasagar, I. (2014). Diversity of Vibrio parahaemolyticus associated with disease outbreak among cultured Litopenaeus vannamei (Pacific white shrimp) in India. Aquaculture, 433, 247-251.

Lai, H. C., Ng, T. H., Ando, M., Lee, C. T., Chen, I. T., Chuang, J. C., ... & Wang, H. C. (2015). Pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimp. Fish & shellfish immunology, 47(2), 1006-1014.

Laranja, J. L. Q., & Bossier, P. (2020). Poly-beta-hydroxybutyrate (PHB) and infection reduction in farmed aquatic animals. Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids, 457-482.

Laranja, J. L. Q., Amar, E. C., Ludevese-Pascual, G. L., Niu, Y., Geaga, M. J., De Schryver, P., & Bossier, P. (2017). A probiotic Bacillus strain containing amorphous poly-beta-hydroxybutyrate (PHB) stimulates the innate immune response of Penaeus monodon postlarvae. Fish & shellfish immunology, 68, 202-210.

Laranja, J. L. Q., Ludevese-Pascual, G. L., Amar, E. C., Sorgeloos, P., Bossier, P., & De Schryver, P. (2014). Poly-β-hydroxybutyrate (PHB) accumulating Bacillus spp. improve the survival, growth and robustness of Penaeus monodon postlarvae. Veterinary microbiology, 173(3-4), 310-317.

Lee, S. Y. (1996). Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends in biotechnology, 14(11), 431-438.

Lenz, R. W., & Marchessault, R. H. (2005). Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules, 6(1), 1-8.

Liu, Y., De Schryver, P., Van Delsen, B., Maignien, L., Boon, N., Sorgeloos, P., ... & Defoirdt, T. (2010). PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis. FEMS microbiology ecology, 74(1), 196-204.

Liu, Y., De Schryver, P., Van Delsen, B., Maignien, L., Boon, N., Sorgeloos, P., ... & Defoirdt, T. (2010). PHB-degrading bacteria isolated from the gastrointestinal tract of aquatic animals as protective actors against luminescent vibriosis. FEMS microbiology ecology, 74(1), 196-204.

López-Cortés, A., Lanz-Landázuri, A., & García-Maldonado, J. Q. (2008). Screening and isolation of PHB-producing bacteria in a polluted marine microbial mat. Microbial ecology, 56(1), 112-120.

Madison, L. L., & Huisman, G. W. (1999). Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiology and molecular biology reviews, 63(1), 21-53.

Mahendhran, K., Arthanari, A., Dheenadayalan, B., & Ramanathan, M. (2018). Bioconversion of oily bilge waste to polyhydroxybutyrate (PHB) by marine Ochrobactrum intermedium. Bioresource Technology Reports, 4, 66-73.

Matsusaki, H., Manji, S., Taguchi, K., Kato, M., Fukui, T., & Doi, Y. (1998). Cloning and molecular analysis of the poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. Journal of bacteriology, 180(24), 6459-6467.

Mohandas, S. P., Balan, L., Lekshmi, N., Cubelio, S. S., Philip, R., & Bright Singh, I. S. (2017). Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source. Journal of applied microbiology, 122(3), 698-707.

Mohanrasu, K., Rao, R. G. R., Dinesh, G. H., Zhang, K., Sudhakar, M., Pugazhendhi, A., ... & Arun, A. (2021). Production and characterization of biodegradable polyhydroxybutyrate by Micrococcus luteus isolated from marine environment. International Journal of Biological Macromolecules, 186, 125-134.

Mostafa, Y. S., Alrumman, S. A., Alamri, S. A., Otaif, K. A., Mostafa, M. S., & Alfaify, A. M. (2020a). Bioplastic (poly-3-hydroxybutyrate) production by the marine bacterium Pseudodonghicola xiamenensis through date syrup valorization and structural assessment of the biopolymer. Scientific Reports, 10(1), 1-13.

Mostafa, Y. S., Alrumman, S. A., Otaif, K. A., Alamri, S. A., Mostafa, M. S., & Sahlabji, T. (2020b). Production and characterization of bioplastic by polyhydroxybutyrate accumulating Erythrobacter aquimaris isolated from mangrove rhizosphere. Molecules, 25(1), 179.

Mousavioun, P., George, G. A., & Doherty, W. O. (2012). Environmental degradation of lignin/poly (hydroxybutyrate) blends. Polymer degradation and stability, 97(7), 1114-1122.

Orts, W. J., Nobes, G. A., Kawada, J., Nguyen, S., Yu, G. E., & Ravenelle, F. (2008). Poly (hydroxyalkanoates): biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault. Canadian Journal of Chemistry, 86(6), 628-640.

Patnaik, P. R. (2006). Dispersion optimization to enhance PHB production in fed-batch cultures of Ralstonia eutropha. Bioresource technology, 97(16), 1994-2001.

Prathiviraj, R., Rajeev, R., Fernandes, H., Rathna, K., Lipton, A. N., Selvin, J., & Kiran, G. S. (2021). A gelatinized lipopeptide diet effectively modulates immune response, disease resistance and gut microbiome in Penaeus vannamei challenged with Vibrio parahaemolyticus. Fish & Shellfish Immunology, 112, 92-107.

Qiao, G., Chen, P., Sun, Q., Zhang, M., Zhang, J., Li, Z., & Li, Q. (2020). Poly-β-hydroxybutyrate (PHB) in bioflocs alters intestinal microbial community structure, immune-related gene expression and early Cyprinid herpesvirus 2 replication in gibel carp (Carassius auratus gibelio). Fish & shellfish immunology, 97, 72-82.

Rajeev, R., Adithya, K. K., Kiran, G. S., & Selvin, J. (2021). Healthy microbiome: a key to successful and sustainable shrimp aquaculture. Reviews in Aquaculture, 13(1), 238-258.

Rajeev, R., Seethalakshmi, P. S., Jena, P. K., Prathiviraj, R., Kiran, G. S., & Selvin, J. (2021). Gut microbiome responses in the metabolism of human dietary components: Implications in health and homeostasis. Critical Reviews in Food Science and Nutrition, 1-17.

Ray, S., & Kalia, V. C. (2017). Biomedical applications of polyhydroxyalkanoates. Indian journal of microbiology, 57(3), 261-269.

Reusch, R. N. (1999). Streptomyces lividans potassium channel contains poly-(R)-3-hydroxybutyrate and inorganic polyphosphate. Biochemistry, 38(47), 15666-15672.

Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry science, 82(4), 632-639.

Robohm, R. A. (1984). In vitro phagocytosis by molluscan hemocytes: a survey and critique of methods. In Invertebrate Blood (pp. 147-172). Springer, Boston, MA.

Rojas-Morales, P., Tapia, E., & Pedraza-Chaverri, J. (2016). β-Hydroxybutyrate: A signaling metabolite in starvation response?. Cellular signalling, 28(8), 917-923.

Rungrassamee, W., Klanchui, A., Maibunkaew, S., Chaiyapechara, S., Jiravanichpaisal, P., & Karoonuthaisiri, N. (2014). Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PloS one, 9(3), e91853.

Sasidharan, R. S., Bhat, S. G., & Chandrasekaran, M. (2015). Biocompatible polyhydroxybutyrate (PHB) production by marine Vibrio azureus BTKB33 under submerged fermentation. Annals of microbiology, 65(1), 455-465.

Sathiyanarayanan, G., Saibaba, G., Kiran, G. S., & Selvin, J. (2013). A statistical approach for optimization of polyhydroxybutyrate production by marine Bacillus subtilis MSBN17. International journal of biological macromolecules, 59, 170-177.

Sekirov, I., Russell, S. L., Antunes, L. C. M., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological reviews.

Selvin, J. (2010). Shrimp Disease Management. Ane Books Pvt Ltd.

Simon‐Colin, C., Raguénès, G., Cozien, J., & Guezennec, J. G. (2008). Halomonas profundus sp. nov., a new PHA‐producing bacterium isolated from a deep‐sea hydrothermal vent shrimp. Journal of applied microbiology, 104(5), 1425-1432.

Situmorang, M. L., Suantika, G., Santoso, M., Khakim, A., Wibowo, I., & Aditiawati, P. (2020). Poly‐β‐Hydroxybutyrate (PHB) Improves Nursery‐Phase Pacific White Shrimp Litopenaeus vannamei Defense against Vibriosis. North American Journal of Aquaculture, 82(1), 108-114

Sudesh, K., & Iwata, T. (2008). Sustainability of biobased and biodegradable plastics. CLEAN–Soil, Air, Water, 36(5‐6), 433-442.

Suguna, P., Binuramesh, C., Abirami, P., Saranya, V., Poornima, K., Rajeswari, V., & Shenbagarathai, R. (2014). Immunostimulation by poly-β hydroxybutyrate–hydroxyvalerate (PHB–HV) from Bacillus thuringiensis in Oreochromis mossambicus. Fish & shellfish immunology, 36(1), 90-97.

Tian, S. J., Lai, W. J., Zheng, Z., Wang, H. X., & Chen, G. Q. (2005). Effect of over-expression of phasin gene from Aeromonas hydrophila on biosynthesis of copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate. FEMS microbiology letters, 244(1), 19-25.

Tokiwa, Y., & Calabia, B. P. (2008). Biological production of functional chemicals from renewable resources. Canadian Journal of Chemistry, 86(6), 548-555.

Van Cam, D. T., Van Hao, N., Dierckens, K., Defoirdt, T., Boon, N., Sorgeloos, P., & Bossier, P. (2009). Novel approach of using homoserine lactone-degrading and poly-β-hydroxybutyrate-accumulating bacteria to protect Artemia from the pathogenic effects of Vibrio harveyi. Aquaculture, 291(1-2), 23-30.

Van Hung, N., Bossier, P., Hong, N. T. X., Ludeseve, C., Garcia‐Gonzalez, L., Nevejan, N., & De Schryver, P. (2019). Does Ralstonia eutropha, rich in poly‐β hydroxybutyrate (PHB), protect blue mussel larvae against pathogenic vibrios?. Journal of fish diseases, 42(6), 777-787.

Vroman, I., & Tighzert, L. (2009). Biodegradable polymers. Materials, 2(2), 307-344.

Wegener, H. C., Aarestrup, F. M., Gerner-Smidt, P., & Bager, F. (1999). Transfer of antibiotic resistant bacteria from animals to man. Acta Veterinaria Scandinavica. Supplementum, 92, 51-57.

Weitkunat, K., Schumann, S., Petzke, K. J., Blaut, M., Loh, G., & Klaus, S. (2015). Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. The Journal of nutritional biochemistry, 26(9), 929-937.

Willis, C. (2000). Antibiotics in the food chain: their impact on the consumer. Reviews in Medical Microbiology, 11(3), 153-160

Wu, H. A., Sheu, D. S., & Lee, C. Y. (2003). Rapid differentiation between short-chain-length and medium-chain-length polyhydroxyalkanoate-accumulating bacteria with spectrofluorometry. Journal of microbiological methods, 53(1), 131-135.

Xu, W. J., & Pan, L. Q. (2012). Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356, 147-152.

Descargas

Publicado

2022-10-12

Cómo citar

Rajeev, R., Seethalakshmi , P., Seghal Kiran, G., Cruz Suárez , L. E., & Selvin, J. (2022). Application of Poly-β-hydroxybutyrate in Shrimp Health Management. Aplicación de poli- β-hydroxybutyrato en el manejo de la salud del camarón. Avances En Nutrición Acuicola, 1(1), 35–49. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/354