Role of Marine Metabolites in Shrimp Growth, Production and Disease Prevention
Palabras clave:
Disease management, growth promoter, immune enhancer, marine metabolites, shrimp aquacultureResumen
This review consolidates the recent information about the global aquaculture production status of fish and
shellfish. Research reports on common and emerging microbial diseases of cultivable species of shrimp are
narrated together with resultant reductions in productivity. The harmful effects antibiotics usage in shrimp
aquaculture and consequent effects on the species as well as ecosystem are highlighted. The in vitro and in
vivo tests of extracts containing metabolites isolated from marine macroalgae, sea grasses and invertebrates in
restraining the proliferation of disease causing microbes are presented. The metabolite bearing marine species
and methods of extraction of marine metabolites are concisely indicated. Studies on unique bacteria
associated with the metabolite - bearing marine organisms, their identity and their significance in metabolite
production are essential for future research and developmental activities in aquaculture and pharmaceutical
applications. The administration of marine metabolites in the post larval and juvenile shrimps as feed additive
for controlling the common microbial diseases such as vibriosis together with essential administration
protocols are reported. Many of the tested marine metabolites are of immense use as they increased the
survival of farm reared shrimps and their growth rates. The resultant specific growth rate attained together
with survival contributed to the significant increase in production. Perusal of literature indicated that marine
secondary metabolites isolated from marine macro algae and sponges exhibited immune enhancing activity in
shrimps in a non specific manner when administered as a feed ingredient.
Descargas
Citas
FAO. 2016. The State of World Fisheries and Aquaculture 2016. Contributing to food Adams, D., &
Boopathy, R. (2013). Use of formic acid to control vibriosis in shrimp aquaculture. Biologia, 68(6),
-1021.
Annie Selva Sonia, G., & Lipton, A. P. (2012). Pathogenicity and antibiotic susceptibility of Vibrio species
isolated from the captive–reared tropical marine ornamental blue damsel fish, Pomacentrus
caeruleus (Quoy and Gaimard, 1825). Indian Journal of Geo-Marine Sciences, 41(4), 348-354.
Annie Selva Sonia, G., Lipton, A. P., & Paul Raj, R. (2008). Antibacterial activity of marine sponge extracts
against fish pathogenic bacteria.
Apines-Amar, M. J. S., & Amar, E. C. (2015). 3. Use of immunostimulants in shrimp culture: An
update. Biotechnological Advances in Shrimp Health Management in the Philippines, Research
Signpost, Kerala, India, 45-71.
Augustine, D., Jacob, J. C., & Philip, R. (2016). Exclusion of Vibrio spp. by an antagonistic marine
actinomycete Streptomyces rubrolavendulae M56. Aquaculture Research, 47(9), 2951-2960.
Bass, D., Stentiford, G. D., Littlewood, D. T. J., & Hartikainen, H. (2015). Diverse applications of
environmental DNA methods in parasitology. Trends in parasitology, 31(10), 499-513.
Beck, B. R., Kim, D., Jeon, J., Lee, S. M., Kim, H. K., Kim, O. J., ... & Holzapfel, W. H. (2015). The effects
of combined dietary probiotics Lactococcus lactis BFE920 and Lactobacillus plantarum FGL0001 on
innate immunity and disease resistance in olive flounder (Paralichthys olivaceus). Fish & shellfish
immunology, 42(1), 177-183.
Chakraborty, K., Lipton, A. P., Paulraj, R., & Chakraborty, R. D. (2010). Guaiane sesquiterpenes from
seaweed Ulva fasciata Delile and their antibacterial properties. European journal of medicinal
chemistry, 45(6), 2237-2244.
Christabell, J., Lipton, A. P., Aishwarya, M. S., Sarika, A. R., & Udayakumar, A. (2011). Antibacterial
activity of aqueous extract from selected macroalgae of southwest coast of India. Seaweed Research
Utilization, 33(1 & 2), 67-75.
Chuchird, N., Rorkwiree, P., & Rairat, T. (2015). Effect of dietary formic acid and astaxanthin on the survival
and growth of Pacific white shrimp (Litopenaeus vannamei) and their resistance to Vibrio
parahaemolyticus. SpringerPlus, 4(1), 440.
Cooke, G., Behan, J., & Costello, M. (2006). Newly identified vitamin K-producing bacteria isolated from the
neonatal faecal flora. Microbial ecology in health and disease, 18(3-4), 133-138.
da Silva, B. C., do Nascimento Vieira, F., Mouriño, J. L. P., Ferreira, G. S., & Seiffert, W. Q. (2013). Salts of
organic acids selection by multiple characteristics for marine shrimp nutrition. Aquaculture, 384,
-110.
Lipton, A. 2017. Role of Marine Metabolites in Shrimp Growth, Production and Disease Prevention. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G.,
Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, Nuevo León, México, pp. 498-522. ISBN 978-607-27-0822-8.
Dashtiannasab, A., Mesbah, M., Pyghan, R., & Kakoolaki, S. (2016). The efficacy of the red seaweed
(Laurencia snyderiae) extract on growth performance, survival and disease resistance in white
shrimp. Iranian Journal of Aquatic Animal Health, 2(1), 1-10.
Dashtiannasb, A., & Yeganeh, V. (2017). The effect of ethanol extract of a macroalgae Laurencia snyderia on
growth parameters and vibriosis resistance in shrimp Litopenaeus vannamei. Iranian Journal of
Fisheries Sciences, 16(1), 210-221.
Dawood, M. A. O., Koshio, S., Ishikawa, M., Yokoyama, S., El Basuini, M. F., Hossain, M. S., ... & Wei, H.
(2017). Dietary supplementation of β‐glucan improves growth performance, the innate immune
response and stress resistance of red sea bream, Pagrus major. Aquaculture Nutrition, 23(1), 148-
De Schryver, P., Defoirdt, T., & Sorgeloos, P. (2014). Early mortality syndrome outbreaks: a microbial
management issue in shrimp farming?. PLoS pathogens, 10(4), e1003919.
Del'Duca, A., Cesar, D. E., Diniz, C. G., & Abreu, P. C. (2013). Evaluation of the presence and efficiency of
potential probiotic bacteria in the gut of tilapia (Oreochromis niloticus) using the fluorescent in situ
hybridization technique. Aquaculture, 388, 115-121.
Dhinakaran, D. I., & Lipton, A. P. (2012). Antimicrobial potential of the marine sponge Sigmadocia pumila
from the south eastern region of India. World J. Fish Mar. Sci, 4, 344-348.
Dhinakaran, D. I., Prasad, D. R. D., Gohila, R., & Lipton, P. (2012). Screening of marine sponge-associated
bacteria from Echinodictyum gorgonoides and its bioactivity. African Journal of
Biotechnology, 11(88), 15469-15476.
Escobedo-Bonilla, C. M. (2016). Emerging Infectious Diseases Affecting Farmed Shrimp in Mexico. Austin J
Biotechnol Bioeng, 3(2), 1062.
Flegel, T. W. (2012). Historic emergence, impact and current status of shrimp pathogens in Asia. Journal of
invertebrate pathology, 110(2), 166-173.
Flores, M., Díaz, F., Medina, R., Re, A. D., & Licea, A. (2007). Physiological, metabolic and haematological
responses in white shrimp Litopenaeus vannamei (Boone) juveniles fed diets supplemented with
astaxanthin acclimated to low‐salinity water. Aquaculture research, 38(7), 740-747.
Gilbert, J. A., Quinn, R. A., Debelius, J., Xu, Z. Z., Morton, J., Garg, N., ... & Knight, R. (2016).
Microbiome-wide association studies link dynamic microbial consortia to
disease. Nature, 535(7610), 94-104.
Gunalan, B., Soundarapandian, P., Anand, T., Kotiya, A. S., & Simon, N. T. (2014). Disease occurrence in
Litopenaeus vannamei shrimp culture systems in different geographical regions of
India. International Journal of Aquaculture, 4.
Hasson, K. W., Wyld, E. M., Fan, Y., Lingsweiller, S. W., Weaver, S. J., Cheng, J., & Varner, P. W. (2009).
Streptococcosis in farmed Litopenaeus vannamei: a new emerging bacterial disease of penaeid
shrimp. Diseases of aquatic organisms, 86(2), 93-106.
Lipton, A. 2017. Role of Marine Metabolites in Shrimp Growth, Production and Disease Prevention. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G.,
Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, Nuevo León, México, pp. 498-522. ISBN 978-607-27-0822-8.
Huxley, V. A. J., & Lipton, A. P. (2009). Immunomodulatory effect of Sargassum wightii on Penaeus
monodon (Fab.). Asian Journal of Animal Science, 4(2), 192-196.
Jean Jose, J., Lipton, A. P., & Subhash, S. K. (2008). Impact of marine secondary metabolites (MSM) from
Hypnea musciformis as an immunostimulant on hemogram count and Vibrio alginolyticus infection
in the prawn, Penaeus monodon, at different salinities.
Jennings, S., Stentiford, G. D., Leocadio, A. M., Jeffery, K. R., Metcalfe, J. D., Katsiadaki, I., ... & Peeler, E.
J. (2016). Aquatic food security: insights into challenges and solutions from an analysis of
interactions between fisheries, aquaculture, food safety, human health, fish and human welfare,
economy and environment. Fish and Fisheries, 17(4), 893-938.
Karsenti, E., Acinas, S. G., Bork, P., Bowler, C., De Vargas, C., Raes, J., ... & Follows, M. (2011). A holistic
approach to marine eco-systems biology. PLoS biology, 9(10), e1001177.
Kent, George. "Fisheries, food security, and the poor." Food policy 22.5 (1997): 393-404.
Kiron, V. (2012). Fish immune system and its nutritional modulation for preventive health care. Animal Feed
Science and Technology, 173(1), 111-133.
Lee, C. T., Chen, I. T., Yang, Y. T., Ko, T. P., Huang, Y. T., Huang, J. Y., ... & Lightner, D. V. (2015). The
opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid
that expresses a deadly toxin. Proceedings of the National Academy of Sciences, 112(34), 10798-
Lightner, D. V., Redman, R. M., Pantoja, C. R., Tang, K. F. J., Noble, B. L., Schofield, P., & Navarro, S. A.
(2012). Historic emergence, impact and current status of shrimp pathogens in the Americas. Journal
of invertebrate pathology, 110(2), 174-183.
Lipton, A. P. (2006). Jose, J: Anticoagulant and immune enhancing activities of marine macroalgae
explored. Spectrum-ICAR News, 12(4), 8-6.
Lipton, A. P., & Pramitha, V. S. (2009). Marine secondary metabolites (MSM) from macro algae enhance
bacterial clearance in hemolymph of Penaeus monodon.
Lipton, A. P., & Sunith, S. (2009). Mariculture of marine sponges for drug development: bioactivity
potentials of cultured sponges, Callyspongia subarmigera (Ridley) and Echinodictyum gorgonoides
(Dendy). Marine Fisheries Information Service T&E Series, (202), 7-10.
Lipton, A.P, Aishwarya. M.S., Sarika. A.R., Anuj. Nishanth. L., Rachana Mol, Medo Merina R.,, Parimala.
Celia. M., Udayakumar. A., Sunith Shine S., & Joseph Selvin. (2014b). Biotechnological Potentials
of Marine Symbiotic and Other Associated Bacteria isolated from tropical Sponges, Marine
angiosperms, Macro algae and Fishes. Paper presented in the First International Conference on
“Marine, Agricultural and Pharma Biotechnology (15th to 17th December 2014), Kakinada, Andhra
Pradesh.
Lipton, A.P., Aishwarya M.S., Sonia. A.S., Pramila. S., Udayakumar. A., Rachana Mol., Anuj Nishanth.L.,
and Shine. S. (2014a). Influence of sponge-associated bacterial metabolites towards microbial
Lipton, A. 2017. Role of Marine Metabolites in Shrimp Growth, Production and Disease Prevention. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G.,
Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, Nuevo León, México, pp. 498-522. ISBN 978-607-27-0822-8.
pathogens of captive reared marine ornamental fish and lobsters. 10th Asia Pacific Marine
Biotechnology Conference at Taipei, Taiwan during May 2014.
Manilal, A., Sujith, S., Kiran, G. S., Selvin, J., Shakir, C., Gandhimathi, R., & Lipton, A. P. (2009).
Antimicrobial potential and seasonality of red algae collected from the southwest coast of India
tested against shrimp, human and phytopathogens. Annals of microbiology, 59(2), 207-219.
Manilal, A., Sujith, S., Selvin, J., Kiran, G. S., Shakir, C., & Lipton, A. P. (2010). Antimicrobial potential of
marine organisms collected from the southwest coast of India against multiresistant human and
shrimp pathogens. Scientia marina, 74(2), 287-296.
Merina, R. M., & Lipton, A. P. (2009). Antibiotic activity of aqueous and methanol extracts of seagrasses
Halodule pinifolia and Syringodium isoetifolium. Journal of Theoretical and Experimental
Biology, 6(2).
Mine, S., & Boopathy, R. (2011). Effect of organic acids on shrimp pathogen, Vibrio harveyi. Current
microbiology, 63(1), 1-7.
Ng, W. K., Koh, C. B., Teoh, C. Y., & Romano, N. (2015). Farm-raised tiger shrimp, Penaeus monodon, fed
commercial feeds with added organic acids showed enhanced nutrient utilization, immune response
and resistance to Vibrio harveyi challenge. Aquaculture, 449, 69-77.
Niu, J., Tian, L. X., Liu, Y. J., Yang, H. J., Ye, C. X., Gao, W., & Mai, K. S. (2009). Effect of dietary
astaxanthin on growth, survival, and stress tolerance of postlarval shrimp, Litopenaeus
vannamei. Journal of the World Aquaculture Society, 40(6), 795-802.
Oidtmann, B., Peeler, E., Lyngstad, T., Brun, E., Jensen, B. B., & Stärk, K. D. (2013). Risk-based methods
for fish and terrestrial animal disease surveillance. Preventive veterinary medicine, 112(1), 13-26.
Pramitha, V. S., & Lipton, A. P. (2013). Antibiotic potentials of red macroalgae Hypnea musciformis
(Wulfen) Lamouroux and Hypnea valentiae (Turner) Montagne. Seaweed Research and
Utilization, 35(1 & 2), 95-107.
Pramitha, V. S., & Lipton, A. P. (2014). Antimicrobial effect of Ulva fasciata Delile, 1813 solvent extracts
against multidrug resistant human pathogenic bacteria and fish pathogens.
Rachanamol, R. S., Lipton, A. P., Thankamani, V., Sarika, A. R., & Selvin, J. (2014). Molecular
characterization and bioactivity profile of the tropical sponge-associated bacterium Shewanella algae
VCDB. Helgoland marine research, 68(2), 263.
Ravi, M., Basha, A. N., Sarathi, M., Idalia, H. R., Widada, J. S., Bonami, J. R., & Hameed, A. S. (2009).
Studies on the occurrence of white tail disease (WTD) caused by MrNV and XSV in hatchery-reared
post-larvae of Penaeus indicus and P. monodon. Aquaculture, 292(1), 117-120.
Romano, N., Koh, C. B., & Ng, W. K. (2015). Dietary microencapsulated organic acids blend enhances
growth, phosphorus utilization, immune response, hepatopancreatic integrity and resistance against
Vibrio harveyi in white shrimp, Litopenaeus vannamei. Aquaculture, 435, 228-236.
Lipton, A. 2017. Role of Marine Metabolites in Shrimp Growth, Production and Disease Prevention. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G.,
Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, Nuevo León, México, pp. 498-522. ISBN 978-607-27-0822-8.
Saputra, F. (2016). Pemanfaatan Metabolit Nodulisporium Sp. Kt29 Untuk Pencegahan Infeksi Vibrio
Harveyi Pada Udang Vaname Yang Dibudidayakan Di Laut (Doctoral dissertation, Bogor
Agricultural University (IPB)).
Seibert, C. H., & Pinto, A. R. (2012). Challenges in shrimp aquaculture due to viral diseases: distribution and
biology of the five major penaeid viruses and interventions to avoid viral incidence and
dispersion. Brazilian Journal of Microbiology, 43(3), 857-864.
Selvin, J. (2010). Shrimp Disease Management. Ane Books Pvt Ltd.
Selvin, J., Manilal, A., Sujith, S., Seghal Kiran, G., & Premnath Lipton, A. (2011). Efficacy of marine green
alga Ulva fasciata extract on the management of shrimp bacterial diseases. Latin American Journal
of Aquatic Research, 39(2).
Shakibazadeh, S., Saad, C. R., Christianus, A., Kamarudin, M. S., Sijam, K., Shamsudin, M. N., & Neela, V.
K. (2008). Evaluation of in vitro Vibrio static activity of Shewanella algae isolated from healthy
Penaeus monodon. African Journal of Biotechnology, 7(21).
Shelby, R. A., Lim, C. E., Aksoy, M., Welker, T. L., & Klesius, P. H. (2007, May). Effects of yeast
subcomponents diet supplements on growth, stress resistance and immune response in Nile tilapia.
In 32nd Fish and Feed Nutrition workshop. Auburn University, Auburn, AL.
Shinn, A. P., Pratoomyot, J., Bron, J. E., Paladini, G., Brooker, E. E., & Brooker, A. J. (2015). Economic
costs of protistan and metazoan parasites to global mariculture. Parasitology, 142(1), 196-270.
Soltanian, S., Stuyven, E., Cox, E., Sorgeloos, P., & Bossier, P. (2009). Beta-glucans as immunostimulant in
vertebrates and invertebrates. Critical reviews in microbiology, 35(2), 109-138.
Stentiford, G. D., Neil, D. M., Peeler, E. J., Shields, J. D., Small, H. J., Flegel, T. W., & Lotz, J. (2012).
Disease will limit future food supply from the global crustacean fishery and aquaculture
sectors. Journal of invertebrate pathology, 110(2), 141-157.
Stentiford, G. D., Sritunyalucksana, K., Flegel, T. W., Williams, B. A., Withyachumnarnkul, B.,
Itsathitphaisarn, O., & Bass, D. (2017). New Paradigms to Help Solve the Global Aquaculture
Disease Crisis. PLoS pathogens, 13(2), e1006160.
Strozzi, G. P., & Mogna, L. (2008). Quantification of folic acid in human feces after administration of
Bifidobacterium probiotic strains. Journal of clinical gastroenterology, 42, S179-S184.
Su, X., Li, X., Leng, X., Tan, C., Liu, B., Chai, X., & Guo, T. (2014). The improvement of growth, digestive
enzyme activity and disease resistance of white shrimp by the dietary citric acid. Aquaculture
international, 22(6), 1823-1835.
Subasinghe, Rohana P. "Epidemiological approach to aquatic animal health management: opportunities and
challenges for developing countries to increase aquatic production through aquaculture." Preventive
veterinary medicine 67.2 (2005): 117-124.
Lipton, A. 2017. Role of Marine Metabolites in Shrimp Growth, Production and Disease Prevention. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G.,
Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, Nuevo León, México, pp. 498-522. ISBN 978-607-27-0822-8.
Subhash, S. K., Lipton, A. P., & Paulraj, R. (2007). Influence of probiotic bacterium Lactobacillus
acidophilus on the survival and growth of pearl oyster Pinctada fucata spat. Indian Journal of
Fisheries, 54(2), 211-216.
Suzer, C., Çoban, D., Kamaci, H. O., Saka, Ş., Firat, K., Otgucuoğlu, Ö., & Küçüksari, H. (2008).
Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on
growth performance and digestive enzyme activities. Aquaculture, 280(1), 140-145.
Tan, L. T. H., Chan, K. G., Lee, L. H., & Goh, B. H. (2016). Streptomyces bacteria as potential probiotics in
aquaculture. Frontiers in microbiology, 7.
Tapia-Paniagua, S. T., Díaz-Rosales, P., León-Rubio, J. M., de La Banda, I. G., Lobo, C., Alarcón, F. J., &
Arijo, S. (2012). Use of the probiotic Shewanella putrefaciens Pdp11 on the culture of Senegalese
sole (Solea senegalensis, Kaup 1858) and gilthead seabream (Sparus aurata L.). Aquaculture
international, 20(6), 1025-1039.
Thompson, J., Gregory, S., Plummer, S., Shields, R. J., & Rowley, A. F. (2010). An in vitro and in vivo
assessment of the potential of Vibrio spp. as probiotics for the Pacific White shrimp, Litopenaeus
vannamei. Journal of applied microbiology, 109(4), 1177-1187.
Van Hai, N., & Fotedar, R. (2009). Comparison of the effects of the prebiotics (Bio-Mos® and β-1, 3-Dglucan)
and the customised probiotics (Pseudomonas synxantha and P. aeruginosa) on the culture of
juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquaculture, 289(3), 310-
Wahjuningrum, D., Tarman, K., & Effendi, I. (2016). Feeding duration of dietary Nodulisporium sp. KT29 to
prevent the infection of Vibrio harveyi on Pacific white shrimp Litopenaeus vannamei. Aquaculture,
Aquarium, Conservation & Legislation-International Journal of the Bioflux Society (AACL
Bioflux), 9(6).
Walla, W., Purivirojkul, W., Chuchird, N., & Limsuwan, C. (2012). Effects of Activate DA on Growth,
Survival and theTotal Number of Bacteria and Vibrio spp. in Rearing of Pacific White Shrimp
(Litopenaeusvannamei). Journal of Fisheries and Environment, 36(2), 14-22.
Wang, W., Sun, J., Liu, C., & Xue, Z. (2017). Application of immunostimulants in aquaculture: current
knowledge and future perspectives. Aquaculture Research, 48(1), 1-23.
Wang, X. W., & Wang, J. X. (2013). Pattern recognition receptors acting in innate immune system of shrimp
against pathogen infections. Fish & shellfish immunology, 34(4), 981-989.
Welker, T. L., Lim, C., Yildirim‐Aksoy, M., Shelby, R., & Klesius, P. H. (2007). Immune response and
resistance to stress and Edwardsiella ictaluri challenge in channel catfish, Ictalurus punctatus, fed
diets containing commercial whole‐cell yeast or yeast subcomponents. Journal of the world
Aquaculture Society, 38(1), 24-35.
Yuniarti, A., Guntoro, D. A., & Maftuch, H. A. (2013). Response of indigenous Bacillus megaterium
supplementation on the growth of Litopenaeus vannamei(Boone), a new target species for shrimp
culture in East Java of Indonesia. J Basic Appl Sci Res, 3(1), 747-54.
Lipton, A. 2017. Role of Marine Metabolites in Shrimp Growth, Production and Disease Prevention. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G.,
Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo
León, San Nicolás de los Garza, Nuevo León, México, pp. 498-522. ISBN 978-607-27-0822-8.
Acknowledgements
The authors are thankful to the University authorities for providing facilities and
encouragement. Dr APL is thankful to the UGC, New Delhi for providing Emeritus
fellowship