Recent Advances in Aquaculture Systems Based on Microorganisms: The Biofloc Technology (Bft) Case

Autores/as

  • Maurício Gustavo Coelho Emerenciano Universidade do Estado de Santa Catarina
  • Giovanni Lemos de Mello Universidade do Estado de Santa Catarina
  • Felipe de Azevedo Silva Ribeiro Universidade Federal Rural do Semi-Árido
  • Anselmo Miranda-Baeza Universidade Estadual de Sonora
  • Luis R. Martínez-Córdova Universidad de Sonora

Palabras clave:

BFT, nutrition, microbial community, alternative ingredients

Resumen

The demand for safety seafood is increasing globally year-by-year. On the other hand, the low productivity and recent diseases outbreaks lead the scientists to search for an alternative system to improve efficiently the aquaculture growth. Biofloc system, also called as biofloc technology (BFT), has the advantage to allow high production with limited or no water exchange. BFT has gained popularity because it offers a practical solution to maintain water quality and recycle feed nutrients. The continuous availability of natural food source in a form of microbial biomass lead the decrease of the feed conversion ratios and the possibility of employ alternative low protein diets, as well as alternative feed ingredients. More efforts have been done in penaeid shrimp nutrition as compared to fish nutrition under biofloc conditions.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Amaya, E., Davis, D.A., Rouse, D.B. 2007. Replacement of fishmeal in practical diets for the Pacific white shrimp (Litopenaeus vannamei) reared under pond conditions. Aquaculture 262, 393 - 401.

Avnimelech, Y. 2015. Biofloc Technology - a practical guide book, 3rd Ed., The World Aquaculture Society, Baton Rouge, Louisiana, USA

Azim, M.E., Little D.C. 2008. The biofloc technology (BFT) in indoor tanks: water quality, biofloc composi- tion, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283, 29–35.

Ballester, E.L.C., Abreu, P.C., Cavalli, R.O., Emerenciano, M., Abreu, L., Wasielesky, W. 2010. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition 16, 163–172.

Bauer, W., Prentice-Hernandez, C., Tesser, M.B., Wasielesky Jr., W., Poersch, L.H.S. et al. 2012. Substitution offishmeal with microbialfloc meal and soy protein concentrate in diets for the pacific white shrimp Litopenaeus vannamei. Aquaculture 342, 112–116

Camaño, H.N. (2014). Substituição da farinha e do óleo de peixe por farinha e óleo de origem vegetal em rações utilizadas na fase de engorda do camarão branco Litopenaeus vannamei, em sistemas de bioflocos (BFT). Dissertação apresentada no Programa de Pós-Graduação em Aquicultura da Universidade Federal do Rio Grande (FURG), 49p.

Crab R., Kochba M., Verstraete W., Avnimelech Y. (2009). Bioflocs technology application in over-wintering of tilapia. Aquacultural Engineering 40, 105–112

Cruz-Suárez, L.E., Nieto-López, M., Guajardo-Barbosa, C., Tapia-Salazar, M., Scholz, U., Ricque-Marie, D., 2007. Replacement of fish meal with poultry by-product meal in practical diets for Litopenaeus vannamei, and digestibility of the tested ingredients and diets. Aquaculture 272, 466–476.

De Schryver, P., Crab, R., Defoirdt, T., Boon, N., Verstraete, W. (2008) The basics of bio-flocs technology: the added value for aquaculture. Aquaculture 277, 125–137.

Ekasari J, Rivandi DR, Firdausi AP, Surawidjajaa EH , Zairin Jr M, Bossier P, De Schryver P (2015) Biofloc technology positively affects Nile tilapia (Oreochromis niloticus) larvae performance. Aquaculture 441, 72-77

Ekasari J., Zairin-Jr M., Putri D.U., Sari N.P., Surawidjaja E.H., Bossier P. (2015). Biofloc-based reproductive performance of Nile tilapia Oreochromis niloticus L. broodstock. Aquaculture Research 46, 509–512

Emerenciano M, Ballester ELC, Cavalli RO, Wasielesky W (2011) Effect of biofloc technology (BFT) on the early postlarval stage of pink shrimp Farfantepenaeus paulensis: growth performance, floc composition and salinity stress tolerance. Aquaculture International 19, 891- 901.

Emerenciano, M. et al. 2015. Recent Advances in Aquaculture Systems Based on Microorganisms: The Biofloc Technology (Bft) Case. En: Cruz-Suárez,

L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., Rivas Vega, M. y Miranda Baeza, A. (Eds),

Nutrición Acuícola: Investigación y Desarrollo, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México,

ISBN 978-607-27-0593-7,pp. 51-61.

Emerenciano M., Ballester E.L.C., Cavalli R.O., Wasielesky W., 2012a. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research 43, 447-457

Emerenciano, M., Cuzon, G., Goguenheim, J., Gaxiola, G., Aquacop. 2012b. Floc contribution on spawning performance of blue shrimp Litopenaeus stylirostris. Aquaculture Research 44, 75-85

Emerenciano M., Gaxiola G., Cuzon G. (2013) Biofloc technology (BFT): a review for aquaculture application and animal food industry. In: Matovic MD (ed.) Biomass Now - Cultivation and Utilization, pp. 301–328. InTech, Queen’s University, Belfast, Canada

FAO. (March 2015) Official website Food and Agriculture Organization of the United Nations. Fisheries and Aquaculture Department. Summary tables of fishery statistics: Capture, aquaculture, commodity and food balance sheets. Available on-line at (http://www.fao.org/fishery/statistics/en)

Forster, I.P., DOMINY, W., OBALDO, L., TACON, A.G.J. 2003. Rendered meat and bone meals as ingredients of diets for shrimp Litopenaeus vannamei (Boone, 1931). Aquaculture 219, 655 - 670.

Hernández, C., Olvera-Novoa, M.A., Aguilar-Vejar, K., González-Rodríguez, B., Parra, I.A. 2008. Partial replacement of fish meal by porcine meat meal in practical diets for Pacific white shrimp (Litopenaeus vannamei) Aquaculture 277, 244-250.

Huerta-Rábago J.A. 2014. Evaluación poblacional de bacterias heterótrofas, oxidantes de amonio y tipo Vibrio, en un cultivo intensivo de tilapia con mínimo recambio de agua utilizando dos sustratos de fijación. Tesis Licenciado en Acuacultura. Universidad Estatal de Sonora, Navojoa, Sonora, México, 47 p.

Ju, Z.Y., Forster, I., Conquest, L., Dominy, W. 2008. Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc fractions to a formulated diet. Aquaculture Nutrition 14, 533–543.

Kim S.K., Pang Z., Seo H.C., Cho Y.R., Samocha T., Jang I.K. (2014) Effects of bioflocs on growth and immune activity of Pacific white shrimp, Litopenaeus vannamei postlarvae. Aquaculture Research 45, 362-371

Kuhn D., G. Boardman, A. Lawrence, L. Marsh, G. Flick. (2009) Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture 296, 51-57.

Lorenzo M.A., Schveitzer R., Santo C.M.E., Candia E.W.S., Mouriño J.L.P., Legarda E.C., Seiffert W.Q.,Vieira F.N. (2015) Intensive hatchery performance of the Pacific white shrimp in biofloc system, Aquacultural Engineering 67, 53-58

Maicá, P.F., Borba, M.R., Wasielesky, W. 2012. Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zero-water-exchange super-intensive system. Aquaculture Research 43, 361–370.

Martínez-Córdova, L.R., Emerenciano, M., Miranda-Baeza, A. & Martínez-Porchas, M. (2014) Microbial-based systems for aquaculture of fish and shrimp: an updated review. Aquaculture, 6, 1–18.

Emerenciano, M. et al. 2015. Recent Advances in Aquaculture Systems Based on Microorganisms: The Biofloc Technology (Bft) Case. En: Cruz-Suárez,

L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., Rivas Vega, M. y Miranda Baeza, A. (Eds),

Nutrición Acuícola: Investigación y Desarrollo, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México,

ISBN 978-607-27-0593-7,pp. 51-61.

Miranda A, Voltolina D, Fr_ıas-Espericueta M, Izaguirre-Fierro G, Rivas-Vega M (2009) Budget and discharges of nutrients to the Gulf of California of a semi-intensive shrimp farm (NW Mexico). Hidrobiol_ogica 19: 43–48.

Mishra J.K., Samocha T.M., Patnaik S., Speed M., Gandy R.L., Ali A. (2008) Performance of an intensive nursery system for the Pacific white shrimp, Litopenaeus vannamei, under limited discharge condition. Aquacultural Engineering 38, 2–15.

Naylor, R.L., Hardy, R.W., Bureau, D.P., Chiua, A., Elliott, M., Farrell, A.P., Forster, I., Gatlin, D.M., Goldburg, R.J., Hua, K., Nichols, P.D. (2009) Feeding aquaculture in an era of finite resources. PNAS 106, 36

Nunes AJP, Gesteira TCV, Goddard S (1997) Food ingestion and assimilation by the southern brown shrimpPenaeussubtilis under semi-intensive culture in NE Brazil. Aquaculture 149: 121–136.

Paripatananont, T., Boonyaratpalin, M., Pengseng, P., Chotipuntu, P. 2001. Substitution of soy protein concentrates for fishmeal in diets of tiger shrimp Penaeus monodon. Aquaculture Research 32, 369-374.

Pérez-Fuentes JA., Pérez-Rostro CI., Hernández-Vergara M.P. (2013). Pond-reared Malaysian prawn Macrobrachium rosenbergii with the biofloc system. Aquaculture 400-401:105-110.

Ray, A.J., Seaborn, G., Leffler, J.W., Wilde, S.B., Lawson, A., Browdy, C.L. 2010. Characterization of microbial communities in minimal-exchange, intensive aquaculture systems and the effects of suspended solids management. Aquaculture 310, 130–138.

Rojas-López, I. 2015. Composición quimica proximal y de aminoacidos del tejido de tilapia roja (Oreochromis niloticus x Oreochromis mossamibcus) cultivada en biofloc alimentada con ingredients vegetales en sustitución de la harina de pescado. Tesis de Licenciado en Nutrición humana. Universidad Estatal de Sonora, Navojoa, Sonora, México, 32 p.

Scopel, B.R., Schveitzer, R., Seiffert, W.Q., Pierri, V., Arantes, R.F., Vieira, F.N., Vinatea, L.A. 2011. Substituição da farinha de peixe em dietas para camarões marinhos cultivados em sistema bioflocos. Pesquisa Agropecuária Brasileira 46, 928-934.

Suarez, J.A., Gaxiola, G., Mendoza, R., Cadavid, S., Garcia, G., Alanis, G., Suarez, A. (2009). Substitution of fishmeal with plant protein sources and energy budget for white shrimp Litopenaeus vannamei (Boon, 1931). Aquaculture 289, 18-123.

Wasielesky W, Atwood H, Atokes A, Browdy CL (2006) Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture 258: 396–403.

Xu, W.J., Pan, L.Q. 2012. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture 356–357, 147–152.

Descargas

Publicado

2015-11-30

Cómo citar

Coelho Emerenciano, M. G., Lemos de Mello, G., Silva Ribeiro, F. de A., Miranda-Baeza, A., & Martínez-Córdova, L. R. (2015). Recent Advances in Aquaculture Systems Based on Microorganisms: The Biofloc Technology (Bft) Case. Avances En Nutrición Acuicola. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/33