Non-coding RNAs: Uncovering their Potential Relevance in Fish Nutrition

Authors

  • Ignacio Fernández University of Algarve, Faro, Portugal
  • Carlos Alfonso Alvarez-González Laboratorio de Acuicultura Tropical, DACBIOL-UJAT
  • Dariel Tovar-Ramírez Instituto Politécnico Nacional 195
  • Mario Galaviz Universidad Autónoma de Baja California

Keywords:

ncRNAs, miRNAs, nutrigenomics, transcriptomics, NGS

Abstract

The optimization of industrial production would only be possible with the discovery, identification and
characterization of biological processes in which a nutrient or any other factor acts, as well as when their
genes and genetic networks revealed. With the advent of Next Generation-Sequencing technologies, the
discovery of non-coding RNAs having a key role on the control of a diverse set of biological functions in
multicellular organism will allow a deeper knowledge on genes and genetic networks control such processes
in farmed fish species. Here, the basics of non-coding RNAs regarding their features, biogenesis and mode of
action will be briefly reviewed, while the research works specifically conducted until now on the
identification of non-coding RNAs in different farmed fish species, developmental stages and tissues using
high throughput technologies will be described and compared. Several non-coding RNAs have been
associated with early developmental events, immune response to pathogen infections, sexual differentiation
and maturation, and nutrition. While the research on miRNAs is the most abundant, new efforts on the
characterization of long non-coding RNAs and PIWI-interacting RNAs profiles provided new insights on how
these non-coding RNAs are also involved in fish nutrition. Finally, the future perspectives and considerations
on the potential use of non-coding RNAs (mainly those found in circulation) in relevant cultured fish species
as new reliable biomarkers of physiological condition will be pointed out.

Downloads

Download data is not yet available.

References

Agarwal, S. et al., 2017. In silico mining of conserved miRNAs of Indian catfish Clarias batrachus

(Linnaeus, 1758 ) from the contigs, ESTs, and BAC end sequences. Applied Biochemistry and

Biotechnology, 182, pp.956–966.

Allegra, A. et al., 2012. Circulating microRNAs: New biomarkers in diagnosis, prognosis and treatment

of cancer (Review). International Journal of Oncology, 41, pp.1897–1912.

Andreassen, R., Worren, M.M. & Høyheim, B., 2013. Discovery and characterization of miRNA genes in

Atlantic salmon (Salmo salar) by use of a deep sequencing approach. BMC Genomics, 14, p.482.

Barozai, K., 2012. The microRNAs and their targets in the channel catfish (Ictalurus punctatus).

Molecular Biology Reports, 39, pp.8867–8872.

Basu, S., Müller, F. & Sanges, R., 2013. Examples of sequence conservation analyses capture a subset of

mouse long non-coding RNAs sharing homology with fish conserved genomic elements. BMC

Genomics, 14(Suppl 7), p.S14.

Bekaert, M. et al., 2013. Sequencing and characterisation of an extensive Atlantic ssalmon (Salmo salar

L.) microRNA repertoire. PLoS ONE, 8(7), p.e70136.

Berthelot, C. et al., 2014. The rainbow trout genome provides novel insights into evolution after wholegenome

duplication in vertebrates. Nature, 5, pp.1–10.

Bizuayehu, T.T. et al., 2013. Characterization of novel precursor miRNAs using next generation

sequencing and prediction of miRNA targets in Atlantic halibut. PLoS ONE, 8(4), p.e61378.

Bizuayehu, T.T. et al., 2012. Differential expression patterns of conserved miRNAs and isomiRs during

Atlantic halibut development. BMC Genomics, 13, p.11.

Bizuayehu, T.T. et al., 2016. First feed affects the expressions of microRNA and their targets in Atlantic

cod. British Journal of Nutrition, 115, pp.1145–1154.

Bizuayehu, T.T. et al., 2015. Temperature during early development has long-term effects on microRNA

expression in Atlantic cod. BMC Genomics, 16, p.305.

Bizuayehu, T.T. & Babiak, I., 2014. MicroRNA in teleost fish. Genome Biology and Evolution, 6(8),

pp.1911–1937.

Boltaña, S. et al., 2016. Long noncoding RNAs (lncRNAs) dynamics evidence immunomodulation during

ISAV- Infected Atlantic salmon (Salmo salar). Scientific Reports, 6, p.22698.

Campos, C. et al., 2014. Thermal plasticity of the miRNA transcriptome during Senegalese sole

development. BMC Genomics, 15, p.525.

Castel, S.E. & Martienssen, R.A., 2013. RNA interference in the nucleus: roles for small RNAs in

Fernández-Monzón, I. et al., 2017. Non-coding RNAs: uncovering their potential relevance in fish nutrition. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-

López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola

Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 363-389. ISBN 978-607-27-0822-8.

transcription, epigenetics and beyond. Nature Reviews, 14, pp.100–112.

Chi, W. et al., 2011. Characterization and comparative profiling of miRNA transcriptomes in bighead

carp and silver carp. PLoS ONE, 6(8), p.e23549.

Chiba, H. et al., 2008. Weak correlation between sequence conservation in promoter regions and in

protein-coding regions of human-mouse orthologous gene pairs. BMC genomics, 15, pp.1–15.

Craig, P.M., Trudeau, V.L. & Moon, T.W., 2014. Profiling hepatic microRNAs in zebrafish: Fluoxetine

exposure mimics a fasting response that targets AMP-Activated protein kinase (AMPK). PLoS

ONE, 9(4), p.e95351.

Crick, F., 1970. Central dogma of molecular biology. Nature, 227, pp.561–563.

Cui, J. et al., 2017. Nutrition, microRNAs, and human health. Advance in Nutrition, 8, pp.105–112.

Ebbesen, K.K., Kjems, J. & Hansen, T.B., 2016. Circular RNAs: Identification, biogenesis and function.

Biochimica et Biophysica Acta, 1859, pp.163–168.

The ENCODE Project Consortium, 2004. The ENCODE (Encyclopedia of DNA Elements) Project.

Science, 306, pp.636–640.

FAO, 2016. State of world fisheries and aquaculture 2016. Food and Agriculture Organization of the

United Nations, Rome.

Fatica, A. & Bozzoni, I., 2014. Long non-coding RNAs: new players in cell differentiation and

development. Nature Reviews, 15, pp.7–21.

Feng, J., Bi, C., Clark, B.S., Mady, R., Shah, P., Kohtz, J.D., 2006. The Evf-2 noncoding RNA is

transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional

coactivator. Genes and Development, 20, pp.1470–1484.

Figueras, A. et al., 2016. Whole genome sequencing of turbot (Scophthalmus maximus ;

Pleuronectiformes): a fish adapted to demersal life. DNA research, 23(3), pp.181–192.

Fritz, J.V., Heintz-Buschart, A., Ghosal, A., Wampach, L., Etheridge, A., Galas, D., Wilmes, P., 2016.

Sources and functions of extracellular small RNAs in human circulation. Annual Reviews in

Nutrition, 36, pp.301–336.

Fu, Y. et al., 2011. Identification and differential expression of microRNAs during metamorphosis of the

Japanese flounder (Paralichthys olivaceus). PLoS ONE, 6(7), p.e22957.

Ghildiyal, M. & Zamore, P.D., 2009. Small silencing RNAs: an expanding universe. Nature Reviews

Genetics, 10, pp.94–108.

Gomes, F. et al., 2017. Identification and characterizatio of the expression profile of the microRNAs in

the Amazon species Colossoma macropomum by next generation sequencing. Genomics, 109(2),

pp.67–74.

Ha, M. & Kim, V.N., 2014. Regulation of microRNA biogenesis. Nature Reviews, 15, pp.509–524.

Henry, V.J. et al., 2014. OMICtools: an informative directory for multi-omic data analysis. Database : the

journal of biological databases and curation, 2014(13), pp.1–5.

Huang, Y. et al., 2016. Genome-wide identification and characterization of microRNA genes and their

targets in large yellow croaker (Larimichthys crocea). Gene, 576(1), pp.261–267.

Iwasaki, Y.W., Siomi, M.C. & Siomi, H., 2015. PIWI-Interacting RNA: Its biogenesis and functions.

Annual Reviews in Biochemistry, 84, pp.405–433.

Fernández-Monzón, I. et al., 2017. Non-coding RNAs: uncovering their potential relevance in fish nutrition. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-

López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola

Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 363-389. ISBN 978-607-27-0822-8.

John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., Marks, D.S., 2004. Human microRNA targets.

PLoS Biology, 2, 11, p.e363.

Johnsson, P. et al., 2014. Evolutionary conservation of long non-coding RNAs; sequence, structure,

function. Biochimica et Biophysica Acta, 1840(3), pp.1063–1071.

Kaikkonen, M.U., Lam, M.T.Y. & Glass, C.K., 2011. Non-coding RNAs as regulators of gene expression

and epigenetics. Cardiovascular Research, 90, pp.430–440.

Kaitetzidou, E. et al., 2015. Dynamics of gene expression patterns during early development of the

European seabass (Dicentrarchus labrax). Physiological Genomics, 47, pp.158–169.

Kim, N.V., Han, J. & Siomi M.C., 2009. Biogenesis of small RNAs in animals. Nature Reviews in.

Molecular and Cell Biology, 10, pp.126–139.

Kozomara, A. & Griffiths-Jones, S., 2014. miRBase: annotating high confidence microRNAs using deep

sequencing data. Nucleic Acids Research, 42, pp.68–73.

Lam, M.T.Y. et al., 2014. Enhancer RNAs and regulated transcriptional programs. Trends in Biochemical

Sciences, 39(4), pp.170–182.

Li, E., & Li, C., 2014. Use of RNA-seq in Aquaculture Research. Poultry, Fisheries and Wildlife

Sciences, 2, p.e108.

Liang, L. et al., 2015. Long noncoding RNA expression profiles in gut tissues constitute molecular

signatures that reflect the types of microbes. Scientific Reports, 5, p.11763.

Lien, S. et al., 2016. The Atlantic salmon genome provides insights into rediploidization. Nature,

(7602), pp.200–205.

Loche, E. & Ozanne, S.E., 2016. Early nutrition, epigenetics, and cardiovascular disease. Current

Opinion in Lipidology, 27, pp.449–458.

Lozada-Chávez, I., Stadler, P.F. & Prohaska, S.J., 2011. Hypothesis for the modern RNA world: a

pervasive non-coding RNA-based genetic regulation is a prerequisite for the emergence of

multicellular complexity. Origins of Life and Evolution of Biospheres, 41, pp.587–607.

Ma, H. et al., 2012. Characterization of the rainbow trout egg microRNA transcriptome. PLoS ONE, 7(6),

p.e39649.

Malone, C.D. & Hannon, G.J., 2009. Small RNAs as guardians of the genome. Cell, 136, pp.656–668.

Martianov, I., et al., 2007. Repression of the human dihydrofolate reductase gene by a non-coding

interfering transcript. Nature, 445, pp.666–670.

McDonald, J.S., et al., 2011. Analysis of circulating microRNA: preanalytical and analytical challenges.

Clinical Chemistry, 57, 833–840.

Mennigen, J.A., et al., 2012. Postprandial regulation of hepatic microRNAs predicted to target the insulin

pathway in rainbow trout. PLoS ONE, 7, p.e38604.

Mennigen, J.A., Martyniuk, C.J., Seiliez, I., Panserat, S., Skiba-Cassy, S., 2014a. Metabolic consequences

of microRNA-122 inhibition in rainbow trout, Oncorhynchus mykiss. BMC Genomics, 15, p.70.

Mennigen, J.A., 2015. Micromanaging metabolism — a role for miRNAs in teleost energy metabolism.

Comparative Biochemistry and Physiology, Part B, 199, pp.115–125.

Nolan, T., Huggett, J. & Sanchez, E., 2013. Good practice guide for the application of quantitative PCR

(qPCR). LGC.

Fernández-Monzón, I. et al., 2017. Non-coding RNAs: uncovering their potential relevance in fish nutrition. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-

López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola

Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 363-389. ISBN 978-607-27-0822-8.

Núñez-Acuña, G. et al., 2017. Functional Diets Modulate lncRNA-Coding RNAs and Gene Interactions

in the Intestine of Rainbow Trout Oncorhynchus mykiss. Marine Biotechnology, 19, pp.287–

Orom, U.A., et al., 2010. Long noncoding RNAs with enhancer-like function in human cells. Cell, 143,

pp.46–58.

Paneru, B. et al., 2016. Differential expression of long non-coding RNAs in three genetic lines of rainbow

trout in response to infection with Flavobacterium psychrophilum. Scientific Reports, 6, p.36032.

Panzica-Kelly, J.M., Zhang, C.X. & Augustine-Rauch, K.A., 2015. Optimization and Performance

Assessment of the Chorion-Off [Dechorinated] Zebrafish Developmental Toxicity Assay.

Toxicological Sciences, 146(1), pp.127–34.

Papić, L., García, K. & Romero, J., 2015. Avances y limitaciones en el uso de los dsRNA como

estrategias de control y prevención de enfermedades virales en sistemas acuícolas diseases in

aquaculture. Latin American Journal of Aquatic Research, 43(3), pp.388–401.

Pauli, A. et al., 2012. Systematic identification of long noncoding RNAs expressed during zebrafish

embryogenesis. Genome Research, 22, pp.577–591.

Qiang, J. et al., 2017. Effects of exposure to Streptococcus iniae on microRNA expression in the head

kidney of genetically improved farmed tilapia (Oreochromis niloticus). BMC Genomics, 18,

p.190.

Quek, X.C. et al., 2015. lncRNAdb v2.0 : expanding the reference database for functional long noncoding

RNAs. Nucleic Acids Research, 43, pp.168–173.

Riffo-Campos, Á.L., Riquelme, I. & Brebi-Mieville, P., 2016. Tools for sequence-based miRNA target

prediction: What to choose? International Journal of Molecular Sciences, 17, p.1987.

Rosani, U., Pallavicini, A. & Venier, P., 2016. The miRNA biogenesis in marine bivalves. PeerJ, 4,

p.e1763.

Salem, M. et al., 2010. A microRNA repertoire for functional genome research in rainbow trout

(Oncorhynchus mykiss). Marine Biotechnology, 12, pp.410–429.

Sand, M. et al., 2012. The miRNA machinery in primary cutaneous malignant melanoma, cutaneous

malignant melanoma metastases and benign melanocytic nevi. Cell and Tissue Research, 350(1),

pp.119–126.

Sarkar, A., Volff, J. & Vaury, C., 2016. piRNAs and their diverse roles: a transposable element-driven

tactic for gene regulation? The FASEB Journal, 31, pp.1–12.

Shen, Y., Guo, X. & Wang, W., 2016. Identification and characterization of circular RNAs in zebrafish.

FEBS Letters, 591(1), pp.213–220.

Shinya, M. et al., 2013. Properties of gene knockdown system by vector-based siRNA in zebrafish.

Development, Growth and Differentiation, 55, pp.755–765.

Silva, M. & Melo, S.A., 2015. Non-coding RNAs in exosomes: new players in cancer biology. Current

Genomics, 5, pp.295–303.

Siomi, M.C. et al., 2011. PIWI-interacting small RNAs: the vanguard of genome defence. Nature Reviews

in Molecular and Cell Biology, 12, pp.246–258.

Smith, E. & Shilatifard, A., 2014. Enhancer biology and enhanceropathies. Nature Structural and

Fernández-Monzón, I. et al., 2017. Non-coding RNAs: uncovering their potential relevance in fish nutrition. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-

López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola

Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 363-389. ISBN 978-607-27-0822-8.

Molecular Biology, 21(3), pp.210–219.

Sokolova, O.A., et al., The interplay of transposon silencing genes in the Drosophila melanogaster

germline. Molekuliarnaia Biologiia, 45(4), pp.633–641.

Sun, Z., Hao, T. & Tian, J., 2017. Identification of exosomes and its signature miRNAs of male and

female Cynoglossus semilaevis. Scientific Reports, 7, p.860.

Tam, S., Tsao, M. & Mcpherson, J.D., 2015. Optimization of miRNA-seq data preprocessing. Briefings in

Bioinformatics, pp.1–14.

Taminato, T. et al., 2016. Enhancer activity-based identification of functional enhancers using zebrafish

embryos. Genomics, 108, pp.102–107.

Trinh, L.A. et al., 2017. Biotagging of specific cell populations in zebrafish reveals gene regulatory logic

encoded in the nuclear transcriptome. Cell Reports, 19, pp.425–440.

Ulitsky, I., et al., 2011. Conserved function of lincRNAs in vertebrate embryonic development despite

rapid sequence evolution. Cell, 147, pp.1537–1550.

Valenzuela-Miranda, D. & Gallardo-Escárate, C., 2016. Novel insights into the response of Atlantic

salmon (Salmo salar) to Piscirickettsia salmonis: Interplay of coding genes and lncRNAs during

bacterial infection. Fish and Shellfish Immunology, 59, pp.427–438.

van der Vlag, J. & Otte, A.P., 1999. Transcriptional repression mediated by the human polycomb-group

protein EED involves histone deacetylation. Nature Genetics, 23, pp.474–478.

Viereck, J. & Thum, T., 2017. Circulating noncoding RNAs as biomarkers of cardiovascular disease and

injury. Circulation Research, 120, pp.381–399.

Viereck, J., Bang, C., Foinquinos, A. & Thum, T., 2014. Regulatory RNAs and paracrine networks in the

heart. Cardiovascular Research, 102, pp.290–301.

Viré, E., et al., 2006. The Polycomb group protein EZH2 directly controls DNA methylation. Nature,

, pp.871–874.

Wang, X. et al., 2015. MicroRNA-sequence profiling reveals novel osmoregulatory microRNA

expression patterns in catadromous eel Anguilla marmorata. PLoS ONE, 10(8), p.e0136383.

Wang, F. et al., 2017. Identification and profiling of Cyprinus carpio microRNAs during ovary

differentiation by deep sequencing. BMC Genomics, 18, p.333.

Watanabe, T. & Lin, H., 2014. Posttranscriptional regulation of gene expression by Piwi proteins and

piRNAs. Molecular Cell, 56, pp.18–27.

Wilczynska, A. & Bushell, M., 2014. The complexity of miRNA-mediated repression. Cell Death and

Differentiation, 22(1), pp.22–33.

Wittrup, A. & Lieberman, J., 2015. Knocking down disease: a progress report on siRNA therapeutics.

Nature Reviews Genetics, 16, pp.543–552.

Wongwarangkana, C. et al., 2015. Deep sequencing, profiling and detailed annotation of microRNAs in

Takifugu rubripes. BMC Genomics, 16, p.457.

Wu, S. et al., 2015. MicroRNA profile analysis of Epithelioma papulosum cyprini cell line before and

after SVCV infection. Developmental and Comparative Immunology, 48, pp.124–128.

Xia, J.H. et al., 2011. Identification and characterization of 63 microRNAs in the Asian seabass Lates

calcarifer. PLoS ONE, 6(3), p.e17537.

Fernández-Monzón, I. et al., 2017. Non-coding RNAs: uncovering their potential relevance in fish nutrition. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-

López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza, M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola

Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 363-389. ISBN 978-607-27-0822-8.

Xu, S. et al., 2017. Transcriptome-wide identification and functional investigation of circular RNA in the

teleost large yellow croaker (Larimichthys crocea). Marine Genomics, 32, pp.71–78.

Xu, Z. et al., 2013. Identification and characterization of microRNAs in channel catfish (Ictalurus

punctatus) by using Solexa sequencing technology. PLoS ONE, 8(1), p.e54174.

Yan, B. et al., 2013. MicroRNA regulation of skin pigmentation in fish. Journal of Cell Science, 126,

pp.3401–3408.

Yan, X. et al., 2012. Identification and profiling of microRNAs from skeletal muscle of the common carp.

PLoS ONE, 7(1), p.e30925.

Yartseva, V. et al., 2016. RESA identifies mRNA-regulatory sequences at high resolution. Nature

Methods, 14, pp.201–207.

Yi, M. et al., 2014. GBE rapid evolution of piRNA pathway in the Teleost fish: Implication for an

adaptation to transposon diversity. Genome and Biology Evolution, 6(6), pp.1393–1407.

Zhang, D. et al., 2014a. The effect of exposure to a High-fat diet on microRNA expression in the Liver of

blunt snout bream (Megalobrama amblycephala). PLoS ONE, 9(5), p.e96132.

Zhang, Q. et al., 2014b. miR-17 is involved in the regulation of LC-PUFA biosynthesis in vertebrates:

effects on liver expression of a fatty acyl desaturase in the marine teleost Siganus canaliculatus.

Biochimica et Biophysica Acta, 1841, pp.934–943.

Zhang, P. et al., 2014c. piRBase: a web resource assisting piRNA functional study. Database, pp.1–7.

Zhou, Y. et al., 2016. Identification and comparative analysis of piRNAs in ovary and testis of Nile tilapia

(Oreochromis niloticus). Genes and Genomes, 38, pp.519–527.

Zhu, Y. et al., 2012. Identification of common carp (Cyprinus carpio) microRNAs and microRNA-related

SNPs. BMC Genomics, 13, p.413.

Published

2017-11-30

How to Cite

Fernández, I., Alvarez-González, C. A., Tovar-Ramírez, D., & Galaviz, M. (2017). Non-coding RNAs: Uncovering their Potential Relevance in Fish Nutrition. Avances En Nutrición Acuicola. Retrieved from https://nutricionacuicola.uanl.mx/index.php/acu/article/view/21

Most read articles by the same author(s)