El metabolismo de los carbohidratos de Litopenaeus setiferus, L. vannamei y L. stylirostris
Palabras clave:
metabolismo, carbohidratos, requerimientos, camarónResumen
Tomando en cuenta la necesidad de explorar a mayor profundidad el metabolismo de
carbohidratos (CBH) de los camarones peneidos, en el presente estudio se reportan los resultados de los
últimos 3 años de una serie de experimentos en los que se integran algunos de los principales mecanismos
enzimáticos y fisiológicos relacionados con el metabolismo de los CBH de L. vannamei, L. setiferus y L.
stylirostris. Durante esta investigación se utilizaron juveniles de L. setiferus (N = 600 ; 0.2 - 1.8 g de peso
vivo inicial) , L. vannamei (N = 840 ; 0.2 - 2.0 g de peso vivo inicial) y L. stylirostris (N= 128 ; 9.5 g de
peso vivo inicial) provenientes de larvas cultivadas en condiciones controladas de laboratorio. En todos los
experimentos los juveniles fueron alimentados con dietas semi-purificadas preparadas con diferentes niveles
de carbohidratos dentro del intervalo de entre 0 y 63% y en 15 y 35o/oo. La tasa de crecimiento relativa
(TCR ) fué máxima en L. vannamei alimentados con dietas con entre 1 y 25% de CBH mientras que en L.
setiferus el mayor crecimiento fué observado en los camarones alimentados con 40% de CBH. La limitada
capacidad de degradación por la a-amilasa y la interferencia que podría ejercer el Glucógeno de la DG
durante la absorción de otros nutrientes podrían ser las principales causas de la limitada substitución de
proteínas por CBH dietéticos. La capacidad de los camarones para sintetizar CBH ha sido ampliamente
demostrada. Un aumento de la actividad de la PECPK en camarones alimentados on dietas con 0% de CBH
durante el presente estudio han puesto en evidencia la independencia metabólica de los CBH que presentan
estas especies.
Descargas
Citas
Abdel-Rahman, S. H., Kanazawa A., Teshima S. 1979. Effects of dietary carbohydrate on the growth and the level of
the hepatopancreati glycogen and serum glucose of prawn. Bulletin of the Japanese Society of Scientific
Fisheries. 45: 1491-1494
Ahmed, F. 1997. In defense of land and livelihood. Sierra Club of Canada., Pp 31.
Al-Mohanna, S. Y., and Nott, J.A. 1987. R cells and the digestive cycle in Penaeus semisulcatus (Crustacea
Decapoda). Mar. Biol. 95: 129-137.
Campbell, J. W. 1991. Excretory nitrogen metabolism. In: (ed Prosser, C.L.) Comparative Animal Physiology. Pp.
-324. Wiley-liss, New York.
Ceccaldi, H. J. 1998. A synopsis of morphology and physiology of digestive system of some crustacean species studied
in France. Reviews in Fsiheries Science. 6: 13-19.
Cortés-Jacinto E., V. H., and Portillo C.G., 1998. Frecuencia y distribución alimenticia en el cultivo intensivo de
juveniles de camarón blanco Penaeus vannamei. In IV simposium Internacional de Nutrición Acuícola vol. 2
. (Roberto Civera Cerecedo, Claudia J. Pérez Estrada, L. Denis Ricque Marie y L.Elizabeth Cruz Suárez) La
Paz B.C.S., México: centro de Investigaciones Biológicas del Noreste.
Cousin, M. 1995. Contribution à l’étude de l’utilisation des glucides et du rapport proteine/énergie chez P.vannamei
et P.stylirostris. Thèse INA/PG. Paris. Pp. 201.
Cruz-Suarez, L. E., D. Ricque-Marie, J. D. Pinal-Mansilla and P. Wesche-Ebelling. 1994. Effect of different
carbohydrate sources on the growth of Penaeus vannamei: Economical impact. Aquaculture. 123: 349-360
Cuzon, G., Rosas, C., Gaxiola, G., Taboada, G., and A., Van Wormhoudt. 2000. Utilization of carbohydrate by
shrimp. In Avances en Nutrición Acuicola V. Memorias del V Simposium Internacional de Nutrición
Acuícola. Eds. Cruz-Suarez, E., Olvera-Novoa, M.A., Ricque-Marie, D., Tapia-Salazar, M., y Civera-
Cerecedo, R.). Mérida Yucatán: CINVESTAV-Mérida.
Da Silva, R. S. M., and Kucharski, L.C. 1992. Effect of hypo osmotic stress on the carbohydrate metabolism of crabs
maintained on high protein or carbohydrate diets. Comparative Biochemestry and Physiology. 101A: 631-
Dall, W. 1975. The role of ninhydrin-positive substances in osmoregulation in the western rock lobster Panulirus
longipes (Milne Edwards). J. Exp. Mar. Biol. Ecol. 19: 43-58.
Dall, W. and D. M. Smith. 1986. Oxygen consumption and ammonia-N excretion in fed and starved tiger prawns
Penaeus esculentus Haswell. Aquaculture. 55: 23-33.
Deshimaru, O., and Shigeno, K. 1972. Introduction to artificial diet for prawn, Penaeus indicus. Aquaculture. 1: 115-
Donaldson, H. A. 1976. Chemical composition of sergestid shrimp (Decapoda: Natantia) collected near Bermuda.
Marine Biology. 38: 51-58.
Folke, C., and N. Kautsky. 1992. Aquaculture with its environmental: prospects for sustainability. --Ocean and
Coastal Management. 17: 5-24.
Gellissen, G., Hennecke and Spindler, K.D. 1991. The syte of synthesis of hemocianin in the crayfish Astacus
leptodactylus. Experientia. 47: 194-195.
Gibson, R., and Barker, P.L. 1979. The decapod hepatopancreas. Oceanogr. Mar. Biol. Ann. Rev. 17: 285-346
Lallier, F. H. a., Walsh, P.J. 1991. Metabolic potential in tissue of the blue crab, Callinectes sapidus. --Bull. mar. Sci.
: 665-669.
Le Chevalier, P. and A. Van Wormhoudt. 1998. Alpha-Glucosidase From the Hepatopan.creas of the Shrimp, Penaeus
vannamei (Crustacea-Decapoda). Journal of Experimental Zoology. 280: 384-394.
Lemos, D. a. R., A. 1998. Nutritional effects on body composition, energy content and trypsin activity of Penaeus
japonicus during early postlarval development. --Aquaculture. 160: 103-116.
Loret, S. 1990. Evaluation de l´importance relative des hemocytes et des cellules de la glande digestive dún crustacé
décapode, dans la mise en réserve et la liberation du glucose. Namur, Fr. Pp. 124
Loret, S. M. 1993. Hemocyte differentiation in the shore crab (Carcinus maenas) could be accompained by a loos of
glycogenosynthesis capability. The journal of experimental zoology. 267: 548-555.
Lovett, D. L. a. F., D.L. 1990. Ontogenetic changes in the digestive activity of larval and postlarval white shrimp
Penaeus setiferus (Crustacea, Decapoda, Penaeidae). Biological Bulletine. 178: 144-159.
Mayzaud, P., Conover R.J. 1988. O:N atomic ratio as a tool to describe zooplankton metabolism. Mar. Ecol. Prog.
Ser. 45: 289-302.
Molina-Poveda, C., R., Civera,1998. Disminución de la proteína en el alimento del camarón como una estrategia para
reducir el impacto ambiental. In IV Simposium Internacional de Nutrición Acuícola vol. 2 (Eds. Roberto
Civera Cerecedo, Claudia J. Pérez Estrada, L. Denis Ricque Marie y L.Elizabeth Cruz Suárez). La Paz B.C.S.
México: Centro de Investigaciones Biológicas del Noreste.
Moon, T. W. 1988. Adaptation, constraint and the function of gluconeogenic pathway. --Canadian Journal of Zoology.
: 1059-1068.
Nelson, S. G., Simmons, M.A., Knight, A.W., and Li, H.W. 1977. The effect of temperature and salinity on the
metabolic rate of juvenile Macrobrachium rosembergii. Comparative Biochemestry and Physiology. 56A:
-537.
Oliveira, G. T. a. Da Silva, R. S. 1997. Gluconeogenesis in hepatopancreas of Chasmagnathus granulata crabs
maintained on high-protein or carbohydrate-rich diets. Comp. Biochem. Physiol. 118A: 1429-1435.
Omondi, J. G. and J. R. Stark. 1996. In vitro carbohydrate digestibility tests in the Indian white shrimp, Penaeus
indicus. Aquaculture. 139: 315-328.
Pascual, P. F., Coloso, R.M., Tamse, C.T.,. 1983. Survival and some histological changes in Penaeus monodon
Fabricius juveniles fed various carbohydrates. Aquaculture. 31: 169-180.
Pedrazzoli, A., Molina C., Montoya N., Townsend S., León-Hing A., Paredes Y., and Calderón J. 1998. Recent
advances on nutrition research of Penaeus vannamei in Ecuador. Reviews in Fisheries Science. 61: 143-151.
Primavera, J. H. 1997. Socie-economic impacts of shrimp culture. Aquaculture Research. 28: 815-827.
Quetin, L. B., Ross, R.M., and Uchio, K. 1980. Metabolic characteristics of midwater zooplankton: ammonia
exctretion, O:N ratios, and the effect of starvation. Marine Biology. 59: 201-209.
Racotta, I. S., and R. Hernández-Herrera. 2000. Metabolic response of the white shrimp, Penaeus vannamei, to
ambient ammonia. Comp. Biochem. Physiol. 125A: 437-443.
Regnault, M. 1981. Respiration and ammonia excretion of the shrimp Crangon crangon L. metabolic response to
prolonged starvation. Journal Comparative Physiology. 141: 549-555
Regnault, M. 1993. Effect of severe hypoxia on some aspects of nitrogen metabolism in the crab Cancer pagurus. Mar.
Behav. Physiol. 22: 131-140
Ricque-Marie, D., Abdo-de La Parra M. I., Cruz Suárez E., Cuzon G., Cousin M., Aquacop, Pike I.H. 1998. Raw
material freshness, a quality criterion for fish meal fed to shrimp. Aquaculture. 165: 85-109
Rosas, C., Cuzon, G., Gaxiola, G., Arena, L., Lemaire, P., Soyez, C., and A. Van Wormhoudt. 2000a. Influence of
dietary carbohydrate on the metabolism of juvenile Litopenaeus stylirostris. Journal experimental marine
biology and ecology. 249: 181-198
Rosas, C., Cuzon, G., Taboada, G., Pascual, C., Gaxiola, G., and Van Wormhoudt, A. 2000b. Effect of dietary
protein and energy levels (P/E) on growth, oxygen consumption, hemolymph and digestive gland
carbohydrates, nitrogen excretion and osmotic pressure of Litopenaeus vannamei and L. setiferus juveniles
(Crustacea, Decapoda ; Penaeidae). Aquaculture Research. in press.
Rosas, C., Sanchez, A., Díaz E.,, Soto, L.A., Gaxiola, G. and Brito, R. 1996. Effect of dietary protein level on
apparent heat increment and post-prandial nitrogen excretion of Penaeus setiferus, P. schmitti, P. duorarum
and P. notialis postlarvae. Journal of The World aquaculture Society. 27: 92-102.
Rosas, C., Bolongaro-Crvenna, A., Sánchez, A., Gaxiola, G., Soto, L. and Escobar, E. 1995. Role of the digestive
gland in the energetic metabolism of Penaeus setiferus. Biol. Bull. 189: 168-174.
Rosas, C., Cuzon, G., Gaxiola, G., Le Priol, Y., Rossignyol, P.C.J., Contreras, F., Sánchez, A. and van Wormhoudt,
A. 2000. Effect of dietary carbohydrate levels and salinity on metabolism and growth of juveniles of
Litopenaeus vannamei. Journal of Experimental Marine Biology and Ecology. in press:.
Rosas, C., Sánchez, A., Díaz, E., Soto, L., Gaxiola, G., Brito, R., Baes, M.I. and Pedroza, R. 1995. Oxygen
consumption and ammonia excretion of Penaeus setiferus, P. schmitti, P. duorarum and P. notialis postlarvae
fed purified test diets: effects of protein level on substrate metabolism. Aquatic Living Resources. 8: 161-169.
Rosas, C., Sánchez, A., Gallardo, P., Quiroz, J., Gaxiola, G., Díaz-Iglesia, E. and Soto, L.A. 1995. Oxygen
consumption and ingestion rate of Penaeus setiferus larvae fed Chaetoceros ceratosporum, Tetraselmis chuii
and Artemia nauplii. Aquaculture Nutrition. 1: 13-20.
Sanchez A., Rosas, C., Escobar, E., and Soto, L.A. 1991. Skeleton weight free oxygen consumption related to
adaptation to environment and habits of six crustacean species. Comparative Biochemestry and Physiology.
A: 69-73.
Shiau, S.-Y., and Peng C-Y. 1992. Utilization of different carbohydrates at different dietary protein levels in grass
prawn, Penaeus monodon, reared in seawater. --Aquaculture. 101: 241-250.
Shiau, S.-Y. 1998. Nutrient requirements of penaeid shrimp. Aquaculture. 164: 77-93.
Taboada, G., Gaxiola G., García T., Pedroza R., Sanchez A., Soto L. and R. C. 1998. Oxygen consumption and
ammonia-N excretion related to protein requirements for growth of withe shrimp Penaeus setiferus. --
Aquaculture Research. 29: 1-11.
van Handel, E. 1965. Estimation of glycogen in small amounts of tissue. Analytical biochemestry. 11: 256-265.
van Wormhoudt, A., Bourreau, G., and Le Moullac, G. 1995. Amylase polymorphism in Crustacea Decapoda:
electrophoretic and immunological studies. Biochemistry, Systematics and Ecology. 23: 139-149.
Velasco, M., Lawrence A.L., and Neill W.H. 1998. Effect of dietary phosphorous level and inorganic source on
survival and growth of Penaeus vannamei postlarvae in zero water exchange culture tanks. Aquatic Living
Resources. 11: 29-33.