Valorización de Macroalgas para su uso como alimento acuícola

Autores/as

  • Alberto Peña-Rodríguez CONACyT Centro de Investigaciones Biológicas del Noroeste, S.C.
  • Alexia Omont Centro de Investigaciones Biológicas del Noroeste, S.C.
  • Regina Elizondo-González CONACyT Centro de Investigaciones Biológicas del Noroeste, S.C.

Palabras clave:

biotecnología acuícola, ingredientes alternativos, macroalgas, nutrición

Resumen

Las macroalgas representan una fuente barata y renovable de nutrientes valiosos para la alimentación de especies acuícolas. Aun cuando el uso de macroalgas en los alimentos acuícolas ha demostrado tener beneficios importantes en el cultivo de diversas especies, el nivel de inclusión de las mismas es limitado principalmente asociado a los altos niveles de fibra insoluble que reduce la digestibilidad del alimento. Los procesos de valorización que permiten eliminar o transformar esta fibra insoluble en las macroalgas, se presentan como potenciales alternativas para un mejor aprovechamiento de estos recursos que resultan en beneficios para el rendimiento de los cultivos acuícolas. En el presente trabajo se revisan los avances en procesos de valorización basados en tres estrategias: fermentación, producción de detritos unicelulares y los concentrados y extractos altos en proteína a partir de macroalgas marinas. A pesar de tener avances significativos en la investigación sobre la valorización de macroalgas marinas y su beneficio en la nutrición de especies de importancia acuícola, aún queda un gran trabajo por desarrollar en el estudio de la gran diversidad de especies de macroalgas disponibles de forma silvestre y producidas por acuicultura.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

An, B. N. T., & Anh, N. T. N. (2020). Co-culture of Nile tilapia (Oreochromis niloticus) and red seaweed (Gracilaria tenuistipitata) under different feeding rates: effects on water quality, fish growth and feed efficiency. Journal of Applied Phycology, 32(3), 2031-2040.

Angell, A. R., Paul, N. A., & de Nys, R. (2017). A comparison of protocols for isolating and concentrating protein from the green seaweed Ulva ohnoi. Journal of Applied Phycology, 29(2), 1011-1026.

Alemañ, A. E., Robledo, D., & Hayashi, L. (2019). Development of seaweed cultivation in Latin America: current trends and future prospects. Phycologia, 58(5), 462-471.

Aslamyah, S., & Karim, M. Y. (2017). Fermentation of seaweed flour with various fermenters to improve the quality of fish feed ingredients. Jurnal Akuakultur Indonesia, 16(1), 8-14.

Austin, B. & Zhang, X. H. (2006). Vibrio harveyi: A significant pathogen of marine vertebrates and invertebrates. Letters in Applied Microbiology, 43(2): 119-124.

Carboni, S., Clegg, S. H. & Hughes, A. D. (2016). The use of biorefinery by-products and natural detritus as feed sources for oysters (Crassostrea gigas) juveniles. Aquaculture, 464: 392-398.

Choi, Y. J., Lee, S. R., & Oh, J. W. (2014). Effects of dietary fermented seaweed and seaweed fusiforme on growth performance, carcass parameters and immunoglobulin concentration in broiler chicks. Asian-Australasian Journal of Animal Sciences, 27(6), 862.

Cian, R. E., Bacchetta, C., Rossi, A., Cazenave, J., & Drago, S. R. (2019). Red seaweed Pyropia columbina as antioxidant supplement in feed for cultured juvenile Pacú (Piaractus mesopotamicus). Journal of Applied Phycology, 31(2), 1455-1465.

Cruz-Suárez, L. E., Tapia-Salazar, M., Nieto-López, M. G. y Ricque-Marie, D. (2008). A Review of the Effects of Macroalgae in Shrimp Feeds and in Co-Culture. En: Cruz Suárez L. E, Ricque-Marie D, Tapia-Salazar M, Nieto-López M. G., Villarreal-Cavazos D. A., Lazo J. P., Viana M. T. (eds) Avances en Nutrición Acuícola IX. IX Simposio Internacional de Nutrición AcuícolaNuevo León, México, pp 304-333

Cruz-Suárez, L. E., León, A., Peña-Rodríguez, A., Rodríguez-Peña, G., Moll, B., & Ricque-Marie, D. (2010). Shrimp/Ulva co-culture: a sustainable alternative to diminish the need for artificial feed and improve shrimp quality. Aquaculture, 301(1), 64-68.

Dubey, A., & Sivaraman, J. (2021). Unravelling the antioxidant and anti-cancerous properties of the chemical constituents present in methanol extract of green algae Chaetomorpha antennina. Bulletin of Pharmaceutical Sciences. Assiut.

Elizondo-González, R., Quiroz-Guzmán, E., Escobedo-Fregoso, C., Magallón-Servín, P., & Peña-Rodríguez, A. (2018). Use of seaweed Ulva lactuca for water bioremediation and as feed additive for white shrimp Litopenaeus vannamei. PeerJ, 6, e4459.

Emblemsvåg, J., Kvadsheim, N. P., Halfdanarson, J., Koesling, M., Nystrand, B. T., Sunde, J., & Rebours, C. (2020). Strategic considerations for establishing a large-scale seaweed industry based on fish feed application: a Norwegian case study. Journal of Applied Phycology, 32(6), 4159-4169.

Evans, F. D., & Critchley, A. T. (2014). Seaweeds for animal production use. Journal of applied phycology, 26(2), 891-899.

FAO. 2021. Estadísticas de pesca y acuicultura. Producción mundial por origen de producción 1950-2019 (FishstatJ). In: FAO División de Pesca. Roma. Actualización 2021. www.fao.org/fishery/statistics/software/fishstatj/es

Feinman, S. G., Martínez, A. U., Bowen, J. L. & Tlusty, M. F. (2017). Fine-scale transition to lower bacterial diversity and altered community composition precedes shell disease in laboratory-reared juvenile American lobster. Diseases of Aquatic Organisms, 124(1): 41-54.

Felix, N., & Brindo, R. A. (2008). Fermented feed ingredients as fish meal replacer in aquafeed production. Aquaculture Asia, 13(2), 33-34.

Felix, N. & Brindo, R. A. (2014a). Evaluation of raw and fermented seaweed , Ulva lactuca as feed ingredient in giant freshwater prawn Macrobrachium rosenbergii. International Journal of Fisheries and Aquatic Studies, 1(3): 199-204.

Felix, N. & Brindo, R. A. (2014b). Substituting fish meal with fermented seaweed, Kappaphycus alvarezii in diets of juvenile freshwater prawn Macrobrachium rosenbergii. International Journal of Fisheries and Aquatic Studies IJFAS, 1(15): 261-265.

Felix, S., & Pradeepa, P. (2012). Lactic acid fermentation of seaweed (Ulva reticulata) for preparing marine single cell detritus (MSCD). Tamilnadu J. Veterinary and Animal Sciences, 8(2), 76-81.

Felix, S. & Pradeepa, P. (2011). Seaweed (Ulva reticulata) Based Fermented Marine Silage Feed Preparation under Controlled Conditions for Penaeus monodon Larval Development. Journal of Marine Science: Research & Development, 01(01): 1-3.

Figueroa, V., Farfán, M., & Aguilera, J. M. (2021). Seaweeds as Novel Foods and Source of Culinary Flavors. Food Reviews International, 1-26.

Fleurence, J., Chenard, E., & Luçcon, M. (1999). Determination of the nutritional value of proteins obtained from Ulva armoricana. Journal of Applied Phycology, 11(3), 231-239.

Fleurence, J. (1999). Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in food science & technology, 10(1), 25-28.

Fleurence, J., Le Coeur, C., Mabeau, S., Maurice, M., & Landrein, A. (1995). Comparison of different extractive procedures for proteins from the edible seaweeds Ulva rigida and Ulva rotundata. Journal of Applied Phycology, 7(6), 577-582.

Fleurence, J., Morançais, M., & Dumay, J. (2018). Seaweed proteins. In Proteins in food processing (pp. 245-262). Woodhead Publishing.

Francis, G., Makkar, H. P. S. & Becker, K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199(3-4): 197-227.

Gamboa-Delgado, J., Peña-Rodríguez, A., Ricque-Marie, D., & Cruz-Suárez, L. E. (2011). Assessment of nutrient allocation and metabolic turnover rate in Pacific white shrimp Litopenaeus vannamei co-fed live macroalgae Ulva clathrata and inert feed: dual stable isotope analysis. Journal of Shellfish Research, 30(3), 969-978.

Hardjani, D. K., Suantika, G., & Aditiawati, P. (2017). Nutritional profile of red seaweed Kappaphycus alvarezii after fermentation using Saccharomyces cerevisiae as a feed supplement for white shrimp Litopenaeus vannamei nutritional profile of fermented red seaweed. Journal of Pure and Applied Microbiology, 11(4), 1637-45.

Harel, M., Clayton, D. & Bullis, R. A. (2007). Feed formulation for terrestral and aquatic animals. US20070082008A1

Hernández, J. C. S., & Murueta, J. H. C. (2009). Activity of trypsin from Litopenaeus vannamei. Aquaculture, 290(3-4), 190-195.

Hui, Y., Tamez-Hidalgo, P., Cieplak, T., Satessa, G. D., Kot, W., Kjærulff, S., ... & Krych, L. (2021). Supplementation of a lacto-fermented rapeseed-seaweed blend promotes gut microbial-and gut immune-modulation in weaner piglets. Journal of Animal Science and Biotechnology, 12(1), 1-14.

Ilias, N. N., Jamal, P., Jaswir, I., Sulaiman, S., Zainuddin, Z., & Azmi, A. S. (2015, January). Potentiality of selected seaweed for the production of nutritious fish feed using solid state fermentation. In Journal of Engineering Science and Technology. Special issue on SOMCHE 2014 & RSCE 2014 Conference (pp. 30-40).

Jerez-Timaure, N., Sánchez-Hidalgo, M., Pulido, R., & Mendoza, J. (2021). Effect of Dietary Brown Seaweed (Macrocystis pyrifera) Additive on Meat Quality and Nutrient Composition of Fattening Pigs. Foods, 10(8), 1720.

Kadam, S. U., Álvarez, C., Tiwari, B. K., & O’Donnell, C. P. (2015). Extraction of biomolecules from seaweeds. In Seaweed sustainability (pp. 243-269). Academic Press.

Kadam, S. U., Álvarez, C., Tiwari, B. K., & O'Donnell, C. P. (2017). Extraction and characterization of protein from Irish brown seaweed Ascophyllum nodosum. Food Research International, 99, 1021-1027.

Katayama, M., Fukuda, T., Okamura, T., Suzuki, E., Tamura, K., Shimizu, Y., ... & Suzuki, K. (2011). Effect of dietary addition of seaweed and licorice on the immune performance of pigs. Animal science journal, 82(2), 274-281.

Kumar, C. S., Ganesan, P., Suresh, P. V., & Bhaskar, N. (2008). Seaweeds as a source of nutritionally beneficial compounds-a review. Journal of Food Science and Technology, 45(1), 1.

Kumara, K. R. P. S. & Hettiarachchi, M. (2017). White faeces syndrome caused by Vibrio alginolyticus and Vibrio fluvialis in shrimp, Penaeus monodon (Fabricius 1798)-multimodal strategy to control the syndrome in Sri Lankan grow-out ponds. Asian Fisheries Science, 30(4): 245-261.

Mann, K. H. (1988). Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnology and Oceanography, 33, 910-930.

Matshogo, T. B., Mnisi, C. M., & Mlambo, V. (2021). Effect of Pre-Treating Dietary Green Seaweed with Proteolytic and Fibrolytic Enzymes on Physiological and Meat Quality Parameters of Broiler Chickens. Foods, 10(8), 1862.

Marinho‐Soriano, E., Camara, M. R., Cabral, T. D. M., & Carneiro, M. A. D. A. (2007). Preliminary evaluation of the seaweed Gracilaria cervicornis (Rhodophyta) as a partial substitute for the industrial feeds used in shrimp (Litopenaeus vannamei) farming. Aquaculture Research, 38(2), 182-187.

Michalak, I., & Chojnacka, K. (2015). Production of seaweed extracts by biological and chemical methods. Marine algae extracts: processes, products, and applications, 121-144.

Nayar, S., & Bott, K. (2014). Current status of global cultivated seaweed production and markets. World Aquaculture, 45(2), 32-37.

Nahar, S., Hossain, F., Feroza, B., & Halim, M. A. (2008). Production of glucoamylase by Rhizopus sp. in liquid culture. Pak. J. Bot, 40(4), 1693-1698.

Nazarudin, M. F., Yusoff, F., Idrus, E. S., & Aliyu-Paiko, M. (2020). Brown seaweed Sargassum polycystum as dietary supplement exhibits prebiotic potentials in Asian sea bass Lates calcarifer fingerlings. Aquaculture Reports, 18, 100488.

Nehal, N. (2014). Seaweed: a potential “superfood” unexplored and untapped. International Journal of Agriculture and Food Science Technology, 5(6), 631-642.

Ngo, T. T. T. (2019). Evaluating the effects of single cell detritus from red seaweed (Gracillaria tenuistipitata) and gutweed (Enteromorpha sp.) on growth of Artemia franciscana. Can Tho University Journal of Science, 11(1), 78-86.

Ogello, E. O., Munguti, J. M., Sakakura, Y., & Hagiwara, A. (2014). Complete replacement of fish meal in the diet of Nile tilapia (Oreochromis niloticus L.) grow-out with alternative protein sources. A review. https://repository.maseno.ac.ke/handle/123456789/2280.

Omont, A., Quiroz-Guzman, E., Tovar-Ramirez, D., & Peña-Rodríguez, A. (2019). Effect of diets supplemented with different seaweed extracts on growth performance and digestive enzyme activities of juvenile white shrimp Litopenaeus vannamei. Journal of Applied Phycology, 31(2), 1433-1442.

Omont, A., Elizondo-González, R., Escobedo-Fregoso, C., Tovar-Ramírez, D., Hinojosa-Baltazar, P., & Peña-Rodríguez, A. (2021a). Bacterial communities and digestive enzymatic activities of Litopenaeus vannamei shrimp fed pre-digested seaweeds as a functional ingredient. Journal of Applied Phycology, 33(2), 1239-1251.

Omont, A., Py, C., Gamboa-Delgado, J., Nolasco-Soria, H., Spanopoulos-Zarco, M., & Peña-Rodríguez, A. (2021b). Nutritional contribution of seaweed Ulva lactuca single-cell detritus and microalgae Chaetoceros calcitrans to the growth of the Pacific oyster Crassostrea gigas. Aquaculture, 541, 736835.

Pal, A., Kamthania, M. C., & Kumar, A. (2014). Bioactive compounds and properties of seaweeds—a review. Open Access Library Journal, 1(4), 1-17.

Peña-Rodríguez, A., Elizondo-González, R., Nieto-López, M. G., Ricque-Marie, D., & Cruz-Suárez, L. E. (2017). Practical diets for the sustainable production of brown shrimp, Farfantepenaeus californiensis, juveniles in presence of the green macroalga Ulva clathrata as natural food. Journal of Applied Phycology, 29(1), 413-421.

Peña-Rodríguez, A., Morales-Alvarado, G., Elizondo-González, R., Mendoza-Carrión, G., Tovar-Ramírez, D., Escobedo-Fregoso, C. (2020). Seaweed single cell detritus effects on the digestive enzymes activity and microbiota of the oyster Crassostrea gigas. Journal of Applied Phycology, 32(5), 3481-3493.

Pereira, R., Valente, L. M., Sousa-Pinto, I., & Rema, P. (2012). Apparent nutrient digestibility of seaweeds by rainbow trout (Oncorhynchus mykiss) and Nile tilapia (Oreochromis niloticus). Algal Research, 1(1), 77-82.

Pérez Camacho, A., Salinas, JM., Delgado, M. & Fuertes, C. (2007). Use of single cell detritus (SCD) produced from Laminaria saccharina in the feeding of the clam Ruditapes decussatus (Linnaeus, 1758). Aquaculture, 266(1-4): 211-218.

Pérez Camacho, A., Salinas, JM., Fuertes, C. & Delgado, M. (2004). Preparation of single cell detritus from Laminaria saccharina as a hatchery diet for bivalve mollusks. Marine Biotechnology, 6(6): 642-649.

Portillo‐Clark, G., Casillas‐Hernández, R., Servín‐Villegas, R., & Magallón‐Barajas, F. J. (2012). Growth and survival of the juvenile yellowleg shrimp Farfantepenaeus californiensis cohabiting with the green feather alga Caulerpa sertularioides at different temperatures. Aquaculture Research, 44(1), 22-30.

Prachyakij, P., Charernjiratrakul, W., & Kantachote, D. (2008). Improvement in the quality of a fermented seaweed beverage using an antiyeast starter of Lactobacillus plantarum DW3 and partial sterilization. World Journal of Microbiology and Biotechnology, 24(9), 1713-1720.

Ragan M. A., & Glombitza, K. W. (1986). Phlorotannins, brown algal polyphenols. In F. E. Round, & D. J. Chapman, Progress in phycological research (Vol. 4, pp. 130±230). Bristol: Biopress Ltd.

Rajauria, G., & Yuan, Y. V. (2021). Algae: A Functional Food with a Rich History and Future Superfood. Recent Advances in Micro and Macroalgal Processing: Food and Health Perspectives, 1-13.

Ratanaburee, A., Kantachote, D., Charernjiratrakul, W., Penjamras, P., & Chaiyasut, C. (2011). Enhancement of γ-aminobutyric acid in a fermented red seaweed beverage by starter culture Lactobacillus plantarum DW12. Electronic Journal of Biotechnology, 14(3), 1-1.

Rato, A., Joaquim, S., Tavares, T. G., Martins, Z. E., Guedes, A. C., Pereira, L. F., ... & Matias, D. (2018). Viability of dietary substitution of live microalgae with dry Ulva rigida in broodstock conditioning of the Pacific oyster (Crassostrea gigas). Biology open, 7(9), bio035923.

Reboleira, J., Silva, S., Chatzifragkou, A., Niranjan, K., & Lemos, M. F. (2021). Seaweed fermentation within the fields of food and natural products. Trends in Food Science & Technology.

Refstie, S., Sahlström, S., Bråthen, E., Baeverfjord, G., & Krogedal, P. (2005). Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquaculture, 246(1-4), 331-345.

Rodríguez-González, H., Orduña-Rojas, J., Villalobos-Medina, J. P., García-Ulloa, M., Polanco-Torres, A., López-Álvarez, E. S., ... & Hernández-Llamas, A. (2014). Partial inclusion of Ulva lactuca and Gracilaria parvispora meal in balanced diets for white leg shrimp (Litopenaeus vannamei). Journal of applied phycology, 26(6), 2453-2459.

Santizo, R. B., Serrano Jr, A. E., & Corre, V. L. (2014). Proximate composition and dry matter digestibility of Ulva lactuca in the black tiger shrimp Penaeus monodon. ABAH Bioflux, 6(1), 75-83.

Santoso, S. I., Suprijatna, E., Setiadi, A., & Susanti, S. (2016). Effect of duck diet supplemented with fermented seaweed wastes on carcass characteristics and production efficiency of indigenous Indonesian ducks. Indian Journal of Animal Research, 50(5), 699-704.

Salgado, C. L., Muñoz, R., Blanco, A., & Lienqueo, M. E. (2021). Valorization and upgrading of the nutritional value of seaweed and seaweed waste using the marine fungi Paradendryphiella salina to produce mycoprotein. Algal Research, 53, 102135.

Schleder, D. D., Blank, M., Peruch, L. G. B., Poli, M. A., Goncalves, P., Rosa, K. V., ... & Hayashi, L. (2020). Impact of combinations of brown seaweeds on shrimp gut microbiota and response to thermal shock and white spot disease. Aquaculture, 519, 734779.

Schleder, D. D., Peruch, L. G. B., Poli, M. A., Ferreira, T. H., Silva, C. P., Andreatta, E. R., ... & do Nascimento Vieira, F. (2018). Effect of brown seaweeds on Pacific white shrimp growth performance, gut morphology, digestive enzymes activity and resistance to white spot virus. Aquaculture, 495, 359-365.

Serrano Jr, A. E., & Aquino, J. I. (2014). Protein concentrate of Ulva intestinalis (Chlorophyta, Ulvaceae) could replace soybean meal in the diet of Oreochromis niloticus fry. Aquaculture, Aquarium, Conservation & Legislation, 7(4), 255-262.

Serrano Jr, A. E., Santizo, R. B., & Tumbokon, B. L. M. (2015). Potential use of the sea lettuce Ulva lactuca replacing soybean meal in the diet of the black tiger shrimp Penaeus monodon juvenile. Aquaculture, Aquarium, Conservation & Legislation-International Journal of the Bioflux Society (AACL Bioflux), 8(3).

Soler-Vila, A., Coughlan, S., Guiry, M. D., & Kraan, S. (2009). The red alga Porphyra dioica as a fish-feed ingredient for rainbow trout (Oncorhynchus mykiss): effects on growth, feed efficiency, and carcass composition. Journal of Applied Phycology, 21(5), 617-624.

Tan, S. H., Mailer, R. J., Blanchard, C. L., & Agboola, S. O. (2011). Canola proteins for human consumption: extraction, profile, and functional properties. Journal of food science, 76(1), R16-R28.

Tanyaros, S., & Chuseingjaw, S. (2016). A partial substitution of microalgae with single cell detritus produced from seaweed (Porphyra haitanensis) for the nursery culture of tropical oyster (Crassostrea belcheri). Aquaculture Research, 47(7), 2080-2088.

Teles, F. B., Assef, A. N. B., Andrade, R. M., Soares, V. V. M., AWdS, A., Lima-Junior, R. C. P., ... & Wilke, D. V. (2021). Sulfated polysaccharides from red seaweed Gracilaria cornea induce macrophages polarization to an antitumor M1 phenotype.

Uchida, M. (1996). Formation of single cell detritus densely covered with bacteria during experimental degradation of Laminaria japonica thalli. Fisheries science, 62(5), 731-736.

Uchida, M., Nakata, K. & Maeda, M. (1997). Introduction of detrital food webs into an aquaculture system by supplying single cell algal detritus produced from Laminaria japonica as a hatchery diet for Anemia nauplii. Aquaculture, 154(2): 125-137.

Uchida, M. & Numaguchi, K. (1998). Method for preparing algal detritus. US005801050A

Uchida, M., Amakasu, H., Satoh, Y. & Murata, M. (2004). Combinations of lactic acid bacteria and yeast suitable for preparation of marine silage. Fisheries Science, 70(3): 507-517.

Uchida, M., & Murata, M. (2002). Fermentative preparation of single cell detritus from seaweed, Undaria pinnatifida, suitable as a replacement hatchery diet for unicellular algae. Aquaculture, 207(3-4), 345-357.

Uchida, M., Kurushima, H., Ishihara, K., Murata, Y., Touhata, K., Ishida, N., ... & Araki, T. (2017). Characterization of fermented seaweed sauce prepared from nori (Pyropia yezoensis). Journal of bioscience and bioengineering, 123(3), 327-332.

Uchida, M., Kurushima, H., Hideshima, N., Araki, T., Ishihara, K., Murata, Y., ... & Ishida, N. (2018). Preparation and characterization of fermented seaweed sauce manufactured from low-quality nori (dried and fresh fronds of Pyropia yezoensis). Fisheries science, 84(3), 589-596.

Valente, L. M. P., Gouveia, A., Rema, P., Matos, J., Gomes, E. F., & Pinto, I. S. (2006). Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 252(1), 85-91.

Watanabe, T. (2002). Strategies for further development of aquatic feeds. Fisheries Science, 68(2), 242-252.

Wong, K. H., & Cheung, P. C. (2001). Nutritional evaluation of some subtropical red and green seaweeds Part II. In vitro protein digestibility and amino acid profiles of protein concentrates. Food chemistry, 72(1), 11-17.

Yang, H., Li, Z. B., Chen, Q., Li, W. J., Sun, Y. Z., & Lu, J. (2016). Effect of fermented Enteromopha prolifera on the growth performance, digestive enzyme activities and serum non‐specific immunity of red tilapia (Oreochromis mossambicus × Oreochromis niloticus). Aquaculture Research, 47(12), 4024-4031.

Yang, Q., Zhou, X., Zhou, Q., Tan, B., Chi, S., & Dong, X. (2009). Apparent digestibility of selected feed ingredients for white shrimp Litopenaeus vannamei, Boone. Aquaculture Research, 41(1), 78-86.

Yin, X. W., Min, W. W., Lin, H. J., & Chen, W. (2013). Population dynamics, protein content, and lipid composition of Brachionus plicatilis fed artificial macroalgal detritus and Nannochloropsis sp. diets. Aquaculture, 380, 62-69.

Zhou, L., Chen, C., Xie, J., Xu, C., Zhao, Q., Qin, JG., Chen, L. & Li, E. (2019). Intestinal bacterial signatures of the “cotton shrimp-like” disease explain the change of growth performance and immune responses in Pacific white shrimp (Litopenaeus vannamei). Fish and Shellfish Immunology, 92(May): 629-636.

Descargas

Publicado

2022-10-12

Cómo citar

Peña-Rodríguez, A., Omont, A., & Elizondo-González, R. (2022). Valorización de Macroalgas para su uso como alimento acuícola. Avances En Nutrición Acuicola, 1(1), 294–315. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/373

Artículos más leídos del mismo autor/a

Artículos similares

<< < 5 6 7 8 9 10 11 12 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.