Alternativas de acuacultura sostenible: Aspectos nutricionales


  • Luis Rafael Martínez Universidad de Sonora
  • Marcel Martínez Porchas Martínez Porchas Centro de Investigacion en Alimentación y Desarrollo, A.C. U. Hermosillo
  • Glen Ricardo Robles Porchas Centro de Investigacion en Alimentación y Desarrollo, A.C. U. Hermosillo
  • Estefanía Garibay Valdez Centro de Investigacion en Alimentación y Desarrollo, A.C. U. Hermosillo

Palabras clave:

Acuacultura sostenible; Producción integrada; Microorganismos en acuacultura


En el presente documento se presentan algunas de las alternativas de acuacultura sostenible que se han probado o se están probando exitosamente en el mundo, destacando especialmente los aspectos nutricionales. Los datos presentados provienen tanto de una exhaustiva revisión bibliográfica como de las experiencias de nuestro cuerpo académico Biotecnología y Sustentabilidad Acuícolas. Se destaca primordialmente el aprovechamiento de fuentes no convencionales de alimentación, sobre todo, de microorganismos fotoautótrofos y heterótrofos.

Se aborda, de manera particular, la incorporación de microorganismos inmovilizados, tanto producidos exógenamente como producidos ex situ e incorporados directamente al sistema o en el alimento; además, se aborda el uso de microalgas inmovilizadas en el sistema de cultivo o incorporadas al alimento y, finalmente, un novedoso sistema llamado FLOCPONICS.

Las evidencias indican que los aspectos nutricionales se encuentran entre los factores que mayormente contribuyen a la sustentabilidad de la actividad acuícola. Los microorganismos de diverso origen y proporcionados de maneras diversas, contribuyen a la nutrición de organismos acuícolas y al mejoramiento del sistema de cultivo.



Los datos de descargas todavía no están disponibles.


Ahmed, N., & Turchini, G. M. (2021). Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. Journal of Cleaner Production, 126604.

Arias-Moscoso, J. L., Cuevas-Acuña, D. A., Rivas-Vega, M. E., Martínez-Córdova, L. R., Osuna-Amarilas, P., & Miranda-Baeza, A. (2016). Physical and chemical characteristics of lyophilized biofloc produced in whiteleg shrimp cultures with different fishmeal inclusion into the diets. Latin American Journal of Aquatic Research, 44(4), 769-778.

Baruah, K., Norouzitallab, P., & Pal, A. K. (2017). Development of low cost and eco-friendly feed for various candidate species for the sustainability of commercial aquaculture and reduction of aquatic pollution. In Developing New Functional Food and Nutraceutical Products (pp. 441-453). Academic Press.

Becerra-Dorame, M. J., Martínez-Porchas, M., Martínez-Córdova, L. R., Rivas-Vega, M. E., Lopez-Elias, J. A., & Porchas-Cornejo, M. A. (2012). Production response and digestive enzymatic activity of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) intensively pregrown in microbial heterotrophic and autotrophic-based systems. The Scientific World Journal, 2012.

Becerra‐Dorame, M. J., Martinez‐Cordova, L. R., Martínez‐Porchas, M., Hernández‐López, J., López–Elías, J. A., & Mendoza–Cano, F. (2014). Effect of using autotrophic and heterotrophic microbial‐based‐systems for the pre‐grown of Litopenaeus vannamei, on the production performance and selected haemolymph parameters. Aquaculture Research, 5(45), 944-948.

Binalshikh-Abubkr, T., & Mohd Hanafiah, M. (2022). Effect of Supplementation of Dried Bioflocs Produced by Freeze-Drying and Oven-Drying Methods on Water Quality, Growth Performance and Proximate Composition of Red Hybrid Tilapia. Journal of Marine Science and Engineering, 10(1), 61.

Boyd, C. E., D'Abramo, L. R., Glencross, B. D., Huyben, D. C., Juarez, L. M., Lockwood, G. S., ... & Valenti, W. C. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, 51(3), 578-633.

de Jesus Gregersen, K. J., Pedersen, L. F., Pedersen, P. B., Syropoulou, E., & Dalsgaard, J. (2021). Foam fractionation and ozonation in freshwater recirculation aquaculture systems. Aquacultural Engineering, 95, 102195.

Deng, Y., Chen, F., Liao, K., Xiao, Y., Chen, S., Lu, Q., ... & Zhou, W. (2021). Microalgae for nutrient recycling from food waste to aquaculture as feed substitute: a promising pathway to eco‐friendly development. Journal of Chemical Technology & Biotechnology.

Ekasari, J., Azhar, M., Surawidjaja, E., De Schryver, P., & Bossier, P. (2013). The effects of bioflocs grown on different carbon sources on shrimp immune response and disease resistance. In Biofloc Technology and Shrimp Disease Workshop.

Ekasari J, Azhar MH, Surawidjaja EH, Nuryati S, De Schryver P, Bossier P (2014) Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immunol 41:332–339.

Emerenciano, M. G. C., Martínez-Córdova, L. R., Martínez-Porchas, M., & Miranda-Baeza, A. (2017). Biofloc technology (BFT): a tool for water quality management in aquaculture. Water quality, 5, 92-109.

Fimbres‐Acedo, Y. E., Servín‐Villegas, R., Garza‐Torres, R., Endo, M., Fitzsimmons, K. M., Emerenciano, M. G., ... & Magallón‐Barajas, F. J. (2020). Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae. Aquaculture Research, 51(10), 4340-4360.

Garibay-Valdez, E., Cicala, F., Martinez-Porchas, M., Gómez-Reyes, R., Vargas-Albores, F., Gollas-Galván, T., ... & Calderón, K. (2021). Longitudinal variations in the gastrointestinal microbiome of the white shrimp, Litopenaeus vannamei. PeerJ, 9, e11827.

Lenz, G.L., Lapa, K.R., Viana, M.L. and Coelho Emerenciano, M.G. (2019). Preliminary characterization of solids in the water of an integrated aquaponic and biofloc system. Arq. Ciên. Mar., 54 (2): 103 – 119.

Martinez‐Cordova, L. R., Campaña‐Torres, A., & Porchas‐Cornejo, M. A. (2002). Promotion and contribution of biota in low water exchange ponds farming blue shrimp Litopenaeus stylirostris (Stimpson). Aquaculture Research, 33(1), 27-32.

Martínez-Córdova, L. R., Martínez Porchas, M., & Cortés-Jacinto, E. (2009). Mexican and world shrimp aquaculture: sustainable activity or contaminant industry?. Revista internacional de contaminación ambiental, 25(3), 181-196.

Martinez-Cordova, L. R., López-Elías, J., & Martinez-Porchas, M. (2020). A preliminary evaluation of an integrated aquaculture-agriculture systems (tilapia and peppers) at mesocosm scale. J Aquac Mar Biol, 9(1), 19-22.

Martínez‐Porchas, M., Martínez‐Córdova, L. R., Porchas‐Cornejo, M. A., & López‐Elías, J. A. (2010). Shrimp polyculture: a potentially profitable, sustainable, but uncommon aquacultural practice. Reviews in Aquaculture, 2(2), 73-85.

Martinez-Porchas, M., Ezquerra-Brauer, M., Mendoza-Cano, F., Higuera, J. E. C., Vargas-Albores, F., & Martinez-Cordova, L. R. (2020). Effect of supplementing heterotrophic and photoautotrophic biofloc, on the production response, physiological condition and post-harvest quality of the whiteleg shrimp, Litopenaeus vannamei. Aquaculture Reports, 16, 100257.

Menaga, M., Felix, S., Charulatha, M., Gopalakannan, A., & Panigrahi, A. (2019). Effect of in-situ and ex-situ biofloc on immune response of Genetically Improved Farmed Tilapia. Fish & shellfish immunology, 92, 698-705.

Ortiz-Estrada, Á. M., Gollas-Galván, T., Martínez-Córdova, L. R., Burgos-Hernández, A., Scheuren-Acevedo, S. M., Emerenciano, M., & Martínez-Porchas, M. (2019). Diversity and bacterial succession of a phototrophic biofilm used as complementary food for shrimp raised in a super-intensive culture. Aquaculture International, 27(2), 581-596.

Ortiz‐Estrada, Á. M., Gollas‐Galván, T., Martínez‐Córdova, L. R., & Martínez‐Porchas, M. (2019). Predictive functional profiles using metagenomic 16S rRNA data: a novel approach to understanding the microbial ecology of aquaculture systems. Reviews in Aquaculture, 11(1), 234-245.

Ortiz‐Estrada, Á. M., Martínez‐Porchas, M., Martínez‐Córdova, L. R., Vargas‐Albores, F., Burgos‐Hernandéz, A., Scheuren‐Acevedo, S. M., & Gollas‐Galván, T. (2021). Bacterial communities and predicted nitrogen metabolism of heterotrophic‐and probiotic‐based biofilms used for super‐intensive indoor shrimp culture. Aquaculture Research, 52(1), 334-344.

Stankus, A. (2021). State of world aquaculture 2020 and regional reviews: FAO webinar series. FAO Aquaculture Newsletter, (63), 17-18.

Schveitzer, R., Arantes, R., Baloi, M. F., Costódio, P. F. S., Arana, L. V., Seiffert, W. Q., & Andreatta, E. R. (2013). Use of artificial substrates in the culture of Litopenaeus vannamei (Biofloc System) at different stocking densities: Effects on microbial activity, water quality and production rates. Aquacultural Engineering, 54, 93-103.

Vargas‑Albores, F., Porchas‑Cornejo, M.A., Martínez‑Porchas, M., Villalpando‑Canchola, E. Gollas‑Galvá, T. and Martínez‑Córdova, L.R. (2009) Bacterial biota of shrimp intestine is significantly modified by the use of a probiotic mixture: a high throughput sequencing approach. Revista de Biología Marina y Oceanografía 44(2): 335-342.

Vargas-Albores, F., Martínez-Córdova, L. R., Gollas-Galván, T., Garibay-Valdez, E., Emerenciano, M. G. C., Lago-Leston, A., ... & Martínez-Porchas, M. (2019). Inferring the functional properties of bacterial communities in shrimp-culture bioflocs produced with amaranth and wheat seeds as fouler promoters. Aquaculture, 500, 107-117.

Wei, Y. F., Wang, A. L., & Liao, S. A. (2020). Effect of different carbon sources on microbial community structure and composition of ex-situ biofloc formation. Aquaculture, 515, 734492.

Yogev, U., Sowers, K. R., Mozes, N., & Gross, A. (2017). Nitrogen and carbon balance in a novel near-zero water exchange saline recirculating aquaculture system. Aquaculture, 467, 118-126.

Zeng, S., Huang, Z., Hou, D., Liu, J., Weng, S., & He, J. (2017). Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages. PeerJ, 5, e3986.




Cómo citar

Martínez , L. R., Martínez Porchas, M. M. P., Robles Porchas, G. R., & Garibay Valdez, E. (2022). Alternativas de acuacultura sostenible: Aspectos nutricionales. Avances En Nutrición Acuicola, 1(1), 245–262. Recuperado a partir de