Biotecnología de Proteínas Recombinantes para la Aplicación en Acuacultura

Autores/as

  • Martha Guerrero-Olazarán UANL
  • Eddy. L. Cab-Barrera UANL
  • Luis J. Galán-Wong UANL
  • José M. Viader-Salvadó UANL

Resumen

Las Ciencias del Mar y la acuacultura no han quedado al margen de la aplicación de los nuevos avances
alcanzados en la Biotecnología Molecular y ésta última ha jugado un papel muy importante en el desarrollo de
la Biotecnología de proteínas ya que gracias a la manipulación de genes ha sido posible producir grandes
cantidades de proteínas, muchas de éstas presentes en concentraciones muy bajas en su ambiente natural.
En este trabajo se describen los enfoques que la acuacultura ha dado a la producción de proteínas
recombinantes. También se analizan los criterios requeridos para la selección de un sistema de expresión para
producir estas proteínas y se comparan los hospederos unicelulares más empleados para estos fines.
Por último se analizan las propiedades de tripsinas y tripsinógenos de especies acuáticas en especial del
Camarón Blanco del Pacífico (Litopenaeus vannamei) y los resultados obtenidos con el empleo de Pichia
pastoris para la producción la forma recombinante de esta proteína de gran interés en la acuacultura.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aoki H., Ahsan M.N., Watabe S. (2003) Heterologous expression in Pichia pastoris and single-step

purification of a cysteine proteinase from northern shrimp. Protein Expression and Purification 31,

-221.

Bi X.Z., Chew F.T. (2004) Molecular, proteomic and immunological characterization of isoforms of arginine

kinase, a cross-reactive invertebrate pan-allergen, from the house dust mite, Dermatophagoides

farinae. Journal of Allergy and Clinical Immunology 113, S226.

Buckholz R.G., Gleeson M.A. (1991) Yeast systems for the commercial production of heterologous proteins.

Biotechnology 9, 1067-1072.

Cereghino G.P.L., Cregg J.M. (1999) Applications of yeast in biotechnology: Protein production and genetic

analysis. Current Opinion Biotechnology 10, 422–427.

Cereghino G.P.L., Cregg J.M. (2000) Heterologous protein expression in the methylotrophic yeast Pichia

pastoris. FEMS Microbiology Reviews 24, 45-66.

Chan Y.H., Cheng C.H.K., Chan K.M. (2003) Recombinant goldfish growth hormones (gfGH-I and -II)

expressed in Escherichia coli have similar biological activities. Comparative Biochemistry and

Physiology - Part A: Molecular & Integrative Physiology 135, 613-624.

Chen L-L., Leu J-H., Huang C-J., Chou C-M., Chen S-M., Wang C-H., Lo C-F., Kou G-H. (2002)

Identification of a nucleocapsid protein (VP35) gene of shrimp white spot syndrome virus and

characterization of the motif important for targeting VP35 to the nuclei of transfected insect cells.

Virology 293, 44-53.

Cohen T., Gertler A. (1981) Pancreatic proteolytic enzymes from carp Cyprinus carpio I. Purification and

physical properties of trypsin, chymosin, elastase and carboxypeptidase B. Comparative

Biochemistry and Physiology 69B, 647–653.

Cregg J.M., Vedvick T.S., Rascke W.C. (1993) Recent advances in the expression of foreign genes in Pichia

pastoris. Biotechnology 11, 905-910.

De-Vecchi S.D., Coppes Z. (1996) Marine fish digestive proteases —relevance to food industry and southwest

Atlantic region—a review. Journal of Food Biochemistry 20, 193–214.

Eckart M.R., Bussineau C.M. (1996) Quality and authenticity of heterologous proteins synthesized in yeast.

Current Opinion Biotechnology 7, 525-530.

Escamilla-Treviño L.L. (2002) Producción de tripsina del camarón blanco del Pacífico (Penaeus vannamei)

en Pichia pastoris. Tesis de Doctorado en Ciencias con especialidad en Biotecnología de la Facultad

de Ciencias Biológicas, U.A.N.L., Monterrey, N.L. (México).

Escamilla-Treviño L.L., Viader-Salvadó J.M., Guerrero-Olazarán M. (1999) Producción de proteínas

recombinantes en Pichia pastoris. CIENCIA UANL 2, 27-33.

Galgani F.G., Benyamin Y., Van Wormhoudt A. (1985) Purification, properties and immunoassay of trypsin

from the shrimp Penaeus japonicus. Comparative Biochemistry and Physiology 81B, 447-452.

Gallegos-López J.A. (2004) Síntesis y clonación molecular del DNAc de α-glucosidasa de camarón

Litopenaeus vannamei. Tesis de Licenciatura de la carrera de Químico Bacteriólogo Parasitólogo de

la Facultad de Ciencias Biológicas, U.A.N.L., San Nicolás de los Garza, N.L. (México).

Gates B.J., Travis J. (1969) Isolation and comparative properties of shrimp trypsin (Penaeus setiferus).

Biochemistry 8, 4483-4489.

Gellisen G., Hollenberg C. (1997) Application of yeasts in gene expression studies: a comparison of

Saccharomyces cerevisiae, Hansenula polymorpha, and Kluyveromyces lactis — a review. Gene

, 87-97.

Gu P.-L., Yu K.L., Chan S-M. (2000) Molecular characterization of an additional shrimp hyperglycemic

hormone: cDNA cloning, gene organization, expression and biological assay of recombinant

proteins. FEBS Letters 472, 122-128.

Guerrero-Olazarán M., Viader-Salvadó J.M. (2003) Pichia pastoris como hospedero para la producción de

proteínas recombinantes. In: Procesos Biotecnológicos. (ed. by Galán-Wong L.J., Elías-Santos M.,

Tamez-Guerra P., Quintero-Ramírez R., Quintero-Zapata I.), pp. 136–156. Universidad Autónoma

de Nuevo León. San Nicolás de los Garza.

Guyonnet V., Thuscik F., Long P.L., Polanowski L.A., Travis J. (1999) Purification and partial

characterization of the pancreatic proteolytic enzymes trypsin, chymotrypsin and elastase from the

chicken. Journal of Chromatography A 852, 217–225.

Haard N.F. (1992) A review of proteolytic enzymes from marine organisms and their application in the food

industry. Journal of Aquatic Food Product Technology 1, 17–35.

Haard N.F. (1994). Protein hydrolysis in seafoods. In: Seafoods chemistry, processing technology and quality

(ed. by Shahidi F., Botta J.R.), pp. 11–33. Blackie Academic and Professional, Glasgow, UK.

Haard N.F. (1998). Speciality enzymes from marine organisms. Food Technology 53, 64–67.

Haard N.F., Simpson B.K. (1994). Proteases from aquatic organisms and their uses in the seafood industry.

In: Fisheries processing: biotechnological applications (ed. by Martin A.M.), pp. 132–154.

Chapman and Hall, London, UK.

Hanquier J., Sorlet Y., Desplancq D., Baroche L., Ebtinger M., Lefèvre J.F., Pattus F.,. Hershberger C.L,

Vertès A.A. (2003) A single mutation in the activation site of bovine trypsinogen enhances its

accumulation in the fermentation broth of the yeast Pichia pastoris. Applied and Environmental

Microbiology 69, 1108–1113.

Hanquier J.M., Hbrshberger C.L., Desplanca D., Lardson J.L., Rosteck P.R. (2000) Production of soluble

recombinant trypsinogen analogs. WO 00/17332, PCT/US99/21047.

Higaki J.N., Evin L.B., Craik C.S. (1989). Introduction of a cysteine protease active site into trypsin.

Biochemistry 28, 9256-9263.

Higgins D.R., Cregg J.M. (1998) Introduction to Pichia pastoris. In: Pichia Protocols. Methods in Molecular

Biology 103 (ed. by Higgins D.R., Cregg J.M.), Humana Press, Totowa, NJ.

Honjo I., Kimura S., Nonaka M. (1990) Purification and characterization of trypsin-like enzyme from shrimp

Penaeus indicus. Nippon Suisan Gakkaishi 56(10), 1627-1634.

Huang C-C., Sritunyalucksana K., Söderhäll K., Song Y-L. (2004) Molecular cloning and characterization of

tiger shrimp (Penaeus monodon) transglutaminase Developmental & Comparative Immunology 28,

-294.

Jiang S.T., Moody M., Chen H.C. (1991) Purification and characterization of proteases from digestive tract of

grass shrimp (Penaeus monodon). Journal of Food Science 56, 322–326.

Jónsdóttir G., Bjarnason J.B, Gudmundsdóttir Á. (2004) Recombinant cold-adapted trypsin I from Atlantic

cod—expression, purification, and identification. Protein Expression and Purification 33, 110-122.

Keil B. (1971) Trypsin. In: The Enzymes. 3rd ed. Vol. III. pp. 249-275.Academic Press. New York.

Kim D.K., Jang I.K., Seo H.C., Shin S.O., Yang S.Y., Kim J.W. (2004) Shrimp protected from WSSV disease

by treatment with egg yolk antibodies (IgY) against a truncated fusion protein derived from WSSV.

Aquaculture 237, 21-30.

Klein B., Moullac L.G., Sellos D., Wormhoudt A.V. (1996) Molecular Cloning and Sequencing of Trypsin

cDNAs from Penaeus vannamei (Crustacea, Decapoda): Use in Assessing Gene Expression during

the Moult Cycle. Journal. Biochemestry. Cell biology. 28(5), 551-563.

Le Moullac (1994) Adaptation des enzymes digestives à l’alimentation chez la crevette Penaeus vannamei

(Crustacea, Decapoda). Memoire pour l’optention du diplôme de l’Ecole Practique des Hautes

Etudes. Montpellier (France).

Le Moullac G.L., Klein B., Sellos D., van Wormhoudt A. (1996) Adaptation of trypsin, chymotrypsin and α-

amylase to casein level and protein source in Penaeus vannamei (Crustacea Decapoda). Journal of

Experimental Marine Biology and Ecology 208, 107–125.

Lee P.G., Lawrence A.L. (1982) A quantitative analysis of digestive enzymes in penaeid shrimp; influence of

diet, age and species. Physiologist 25, 241

Lin S-T., Chang Y-S., Wang H-C., Tzeng H-F., Chang Z-F., Lin J-Y., Wang C-H., Lo C-F., Kou G-H. (2002)

Ribonucleotide reductase of shrimp white spot syndrome virus (WSSV): expression and enzymatic

activity in a baculovirus/insect cell system and WSSV-infected shrimp. Virology 304, 282-290.

Lu P.J., Liu H.C., Tsai I.H. (1990) The midgut trypsins of shrimp (Penaeus monodon), biology and chemistry.

Hoppe-Seyler 371, 851–857.

Luo T., Zhang X., Shao Z., Xu X. (2003) PmAV, a novel gene involved in virus resistance of shrimp. Penaeus

monodon FEBS Letters 551, 53-57.

Macouzet M., Simpson B.K., Lee B.H (1999) Cloning of fish enzymes and other fish protein genes. Critical

Reviews in Biotechnology 19, 179-196.

Martínez A., Olsen R.L. Serra J.L. (1988) Purification and characterization of two trypsin-like enzymes from

the digestive tract of anchovy Engraulis encrasicholus. Comparative Biochemistry and Physiology A

Molecular and Integrative Physiol 91, 677–684.

McLean E, Devlin R.H., Byatt J.C., Clarke W.C, Donaldson E.M (1997) Impact of a controlled release

formulation of recombinant bovine growth hormone upon growth and seawater adaptation in coho

(Oncorhynchus kisutch) and chinook (Oncorhynchus tshawytscha) salmon. Aquaculture 156, 113-

Melamed P., Gong Z., Fletcher G., Hew C.L. (2002) The potential impact of modern biotechnology on fish

aquaculture. Aquaculture 204, 255-269.

Muller S., Sandal S., Kamp-Hansen P., Dalboge H. 1998 Comparison of expression systems in the yeasts

Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces

pombe and Yarrowia lipolytica. Cloning of two novel promoters from Y. lipolytica. Yeast 14, 1267-

Neurath H. (1984) Evolution of proteolytic enzymes. Science 224, 350–357.

Ohta S., Nishikawa A., Imamura K. (2003) Molecular cloning and expression of pyruvate kinase from

globefish (Fugu rubripes) skeletal muscle. Comparative Biochemistry and Physiology Part B:

Biochemistry and Molecular Biology 135, 397-405.

Peterson B.C., Small B.C.,. Bosworth B.G. (2004) Effects of bovine growth hormone (Posilac®) on growth

performance, body composition, and IGFBPs in two strains of channel catfish. Aquaculture 232,

-663.

Romanos M.A., Scorer C.A., Clare J.J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423-488.

Romanos R. (1995) Advances in the use of Pichia pastoris for high level gene expression. Current Opinion

Biotechnology 6, 527-533.

Sainz J.C., García-Carreño F., Hernández-Cortés P. (2004a) Penaeus vannamei isotrypsins: purification and

characterization. Comparative Biochemistry and Physiology Part B 138, 155–162.

Sainz J.C., García-Carreño F., Sierra-Beltrán A., Hernández-Cortés P. (2004b) Trypsin synthesis and storage

as zymogen in the midgut gland of the shrimp Litopenaeus vannamei. Journal of Crustacean Biology

, 266–273.

Shahidi F., Janak Kamil Y.V.A. (2001). Enzymes from fish and aquatic invertebrates and their application in

the food industry. Trends in Food Science & Technology. 12, 435-464.

Tsai I.H., Lu P., Chuang J.L. (1991) The midgut enzymes of shrimp Penaeus monodon, Penaeus japonicus

and Penaeus penicillatus. Biochemica Biophysica 1080, 59–67.

Udomkit A., Treerattrakool S., Panyim S. (2004) Crustacean hyperglycemic hormones of Penaeus monodon:

cloning, production of active recombinant hormones and their expression in various shrimp tissues.

Journal of Experimental Marine Biology and Ecology 298, 79-91.

Viader-Salvadó J.M., Fuentes-Garibay J.A., Castillo-Galván M., Castillo-Galván M., Galán-Wong L.,

Guerrero-Olazarán M. (2004) Producción de tripsinógeno del camarón Litopenaeus vannamei en

cepas recombinantes Pichia pastoris a nivel fermentador. BIOTEC’04. Universidad de Oviedo y

Sociedad Española de Biotecnología, Oviedo (España).

Viader-Salvadó J.M., Guerrero-Olazarán M. (2003) Monitoreo y control de bioprocesos con Pichia pastoris.

En: Procesos Biotecnológicos. (ed. by Galán-Wong L.J., Elías-Santos M., Tamez-Guerra P.,

Quintero-Ramírez R., Quintero-Zapata I.), pp. 232-237, Universidad Autónoma de Nuevo León, San

Nicolás de los Garza.

Villacis J.F., Lehrer N., Vogel L., Schicktanz S., Randow S., Reese G., El-Dahr J.M., Vieths S., Lehrer S.B.

(2004) Comparison of IgE reactivity of recombinant and natural pen a 1 by RAST and mediator

release. Journal of Allergy and Clinical Immunology, 113, S148 .

Vozza L.A., Wittwer L., Higgins D.R., Purcell T.J., Beergseid M., Collins-Racie L.A., LaVallie E.R.,

Hoeffler J.P. (1996). Production of a recombinant bovine enterokinase catalytic subunit in the

methylotrophic yeast Pichia pastoris. Bio/Technology 14, 77-81.

Walsh G., Headon D.R. (1995) Protein Biotechnology. pp. 1, 13-15. John Wiley and Sons.

Walsh K. (1970) Trypsinogens and trypsins of various species. Methods in Enzymology 19, 41-63.

Woldike H.F., Kjeldsen T.B. (1999) Process for producing trypsin (trypsinogen). United States Patent

945.328.

Yee L., Blanch, H.W. (1993). Recombinant trypsin production in high cell density fed-batch cultures in

Escherichia coli. Biotechnology and Bioengineering 41, 781-790.

Yodmuang S., Udomkit A., Treerattrakool S., Panyim S. (2004) Molecular and biological characterization of

molt-inhibiting hormone of Penaeus monodon. Journal of Experimental Marine Biology and

Ecology 312, 101-114.

Descargas

Cómo citar

Guerrero-Olazarán, M., Cab-Barrera, E. L., Galán-Wong, L. J., & Viader-Salvadó, J. M. (2019). Biotecnología de Proteínas Recombinantes para la Aplicación en Acuacultura. Avances En Nutrición Acuicola. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/209

Artículos más leídos del mismo autor/a