Transcriptómica, la Nueva Puerta de Conocimiento para la Nutrición en Acuicultura: Actividad Enzimática Digestiva en Larvas de Crustáceos
Keywords:
Enzimas digestivas, Larvas crustáceos, Nutrición larvas, TranscriptómicaAbstract
El conocimiento del transcriptoma y su regulación es fundamental para la interpretación articulada de los
diversos constituyentes moleculares que integran la red de respuesta génica de un individuo ante un evento
inductor. La expresión o transcripción de los genes se ha implementado recientemente en estudios
nutricionales de larvas. Las investigaciones que combinan los mecanismos reguladores de la expresión de
genes con la actividad de las enzimas digestivas durante el desarrollo larval en peces son escasas y aún más en
crustáceos.
En el presente documento se abordan algunos de los aspectos relevantes relacionados con el potencial de la
transcriptómica en el estudio de la nutrición de larvas de crustáceos de interés comercial.
Downloads
References
Altschul, S.F., W. Gish, W. Miller, E.W. Myers, y D.J. Lipman., 1990. Basic local alignment search tool.
Jour. Mol. Biol., 215: 403–410.
Andrés, M., E. Gisbert, M. Díaz, F.J. Moyano, A. Estévez y G. Rotllant. 2010. Ontogenetic changes in
digestive enzymatic capacities of the spider crab, Maja brachydactyla (Decapoda: Majidae). Jour. of
Exp. Mar. Bio. and Eco., 389: 75–84.
Biesiot, P.M., y J.M. Capuzzo. 1990. Changes in digestive enzyme activities during early development of the
American lobster Homarus americanus Milne edwards. Jour. Exp. Mar. Biol. Ecol., 136: 107–122.
Bolívar-Zapata, F.G. 2007. Capítulo III: Ciencia genómica, proteómica y bioinformática el genoma, el
transcriptoma y el proteoma humano 85-116 pp. En: Bolívar-Zapata, F.G (Ed.). Fundamentos y casos
exitosos de la biotecnología moderna. Segunda edición. El Colegio Nacional, México. 736 p.
Brun, G.L. y M.B. Wojtowicz. 1976. A comparative study of the digestive enzymes in the hepatopancreas of
the Jonah crab (Cancer borealis) and the rock crab (Cancer irroratus ). Comp. Biochem. Physiol.
B, 387-39.
Cai, Z. Li, W., Mai, K., Xu, W., Zhang, Y., y Q. Ai. 2015. Effects of dietary size-fractionated fish
hydrolysates on growth, activities of digestive enzymes and aminotransferases and expression of some
protein metabolism related genes in large yellow croaker (Larimichthys crocea) larvae. Aquaculture,
: 40–47.
Canada, P., Conceição, L.E.C., Mira, S., Teodósio, R., Fernandes, J.M.O., Barrios, C., Millán, F., Pedroche,
J., Valente, L.M.P., y S. Engrola. 2017. Dietary protein complexity modulates growth, protein
utilisation and the expression of protein digestion-related genes in Senegalese sole larvae.
Aquaculture, in press.
Capobianco, E. 2014. RNA-Seq data: a complexity journey Comp. and Struc. Biotech. Jour., 11: 123–130.
Castellanos, L., L.J. González, y G. Padrón. 2004. Proteómica. 365-403. En: Vispo, N.S. (Ed.). Combinatoria
Molecular. Elfos Scientiae. La Habana, Cuba. 419 p.
Chomczynski, P. 1993. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from
cell and tissue samples. Bio.Tech., 15: 532–537.
Chomczynski, P., y N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate–
phenol–chloroform extraction. Anal. Bioch., 162: 156- 159.
De Silva, S.S., y T.A. Anderson. 1995. Fish nutrition in aquaculture. Chapman y Hall Aquaculture Series.
London, UK. 319 p.
Felgenhauer, A., B. Thistle, y L. Watling. 1989. Functional Morphology of Feeding and Grooming in
Crustacea. CRC Press. Rotterdam, Netherlands. 320 p.
Ferrer, A., M. Nazabal, y L.I. Novoa. 2004. Una aproximación a la genómica. 323-345. En: Vispo, N.S. (Ed.).
Combinatoria Molecular. Elfos Scientiae. La Habana, Cuba. 419 p.
Forne.I., J. Abián., y J. Cerda. 2010. Fish proteome analysis: Model organisms and non-sequenced species.
Proteomics, 10: 858-872.
Garber, M., M. Grabherr, M. Guttman, y C. Trapnell. 2011. Computational methods for transcriptoma
annotation and quantification using RNAseq. Nat. Meth., 8: 469-478.
García-Gasca, A., M.A. Galaviz, J.N. Gutiérrez, y A. García-Ortega. 2006. Development of the digestive
tract, trypsin activity and gene expression in eggs and larvae of the bullseye puffer fish Sphoeroides
annulatus. Aquaculture, 251: 366– 376.
Grabherr, M.G., B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I. Amit, X. Adiconis, L. Fan, R.
Raychowdhury, Q.D. Zeng, Z.H Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. di Palma,
B.W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, y A. Regev. 2011. Full-length
transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biot., 29: 644–652.
Green, M.R., y J. Sambrook. 2012. Molecular Cloning: A Laboratory Manual, Four ed. Cold Spring Harbor
Laboratory Press, New York, USA. 1881 p.
Harms, J., B. Meyer-Harms, R.R. Dawirs, y K. Anger. 1994. Growth and physiology of Carcinus maenas
(Decapoda, Portunidae) larvae in the field and in laboratory experiments. Mar. Ecol. Prog. Ser., 108:
–118.
Harms, J., K. Anger, S. Klaus, y B. Seeger. 1991. Nutritional effects of ingestion rate, digestive activity,
growth and biochemical composition of Hyas araneus L. (Decapoda: Majidae). Jour. Exp. Mar. Biol.
Ecol., 145: 233-265.
Harris, R.P., J.F. Samain, J. Moal, V. Martin-Jezequel, y S.A. Poulet. 1986. Effects of algal diet on digestive
activity in Calanus helgolandicus. Mar. Biol. 90: 353-361.
Hirche, H.J., y K. Anger. 1987. Digestive enzyme activities during larval development of Hyas araneus
(Decapoda, Majidae). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol., 87 (2): 297–302.
Hochachka. P., y G. Somero. 1984. Biochemical adaptation. Princeton University Press. USA, 537 p.
Houlihan, D., T. Boujard, y M. Jobling. 2001. Food intake in fish. Blackwell Science Ltda. Londres, UK. 418
p.
Huang, Q.S., J.H. Yan, J.Y. Tang, Y.M. Tao, X.L. Xie, Y. Wang, X.Q. Wei, Q.H. Yan, y Q.X. Chen. 2010.
Cloning and tissue expressions of seven chitinase family genes in Litopenaeus vannamei. Fish
Shellfish Immunol., 29: 75-81.
Jones, D.A., A.B. Yule y D.L. Holland. 1997a. Larval nutrition 353-389. En: D’Abramo, L.R., D.E. Conklin y
D.M. Akiyama (Eds.). Crustacean nutrition: Advances in World Aquaculture. Volume 6. World
Aquaculture Society, Louisiana, USA. 587 p.
Jones, D.A., M. Kumlu, L. Le Vay, y D.J. Fletcher. 1997b. The digestive physiology of herbivorous,
omnivorous and carnivorous crustacean larvae: A review. Aquaculture, 155: 285-295.
Jones, D.A., M.S. Kamarudin, y L. Le Vay. 1993. The potential for replacement of live feeds in larval culture.
Jour. World Aquacult. Soc., 24: 199-210.
Kamarudin, M.S., D.A. Jones, L. Le Vay, y A.Z. Abidin. 1994. Ontogenetic changes in digestive enzyme
activity during larval development of Macrobrachium rosenbergii. Aquaculture, 123: 323–333.
Klein, B., D. Sellos, y A. van Wormhoudt. 1998. Genomic organization and polymorphism of a crustacean
trypsin multi-gene family. Gene, 216 (1): 123–129.
Kortner, T.M., I. Overrein, G. Øie, E. Kjørsvik, T. Bardal, P.A. Wold, y A. Arukwe. 2011. Molecular
ontogenesis of digestive capability and associated endocrine control in Atlantic cod (Gadus morhua)
larvae. Com. Bioch. and Phys., Part A, 160: 190–199.
Le Chevalier, P., D. Sellos, y A. van Wormhoudt. 2000. Molecular cloning of a cDNA encoding alphaglucosidase
in the digestive gland of the shrimp, Litopenaeus vannamei. Cell. Mol. Life Sci. 57: 1135–
Lemos, D., F.L. Garcia-Carreño, P. Hernández, y A. Navarrete del Toro. 2002. Ontogenetic variation in
digestive proteinase activity, RNA and DNA content of larval and postlarval white shrimp
Litopenaeus schmitti. Aquaculture, 214: 363–380.
Le Vay, L., D.A. Jones, A.C. Puello-Cruz, R.S. Sangha y C. Ngamphongsai. 2001. Digestion in relation to
feeding strategies exhibited by crustacean larvae. Com. Bioch. Phys. Part A, 128: 623-630.
Lockhart, D., y E. Winzeler. 2000. Genomics, Gene Expression and DNA Arrays. Nature, 415 : 827-836.
Lovett, D.L., y D.L. Felder. 1990. Ontogenetic change in digestive enzyme activity of larval and postlarval
white shrimp Penaeus setiferus (Crustacea, Decapoda, Penaeidae). Biol. Bull., 178: 144–159.
Mata-Sotres, J.A., Martos-Sitcha, J.A., Astola, A., Yúfera, M., y G. Martínez-Rodríguez. 2016. Cloning and
molecular ontogeny of digestive enzymes in fed and food-deprived developing gilthead seabream
(Sparus aurata) larvae. Com. Bio. Phy. Part B: Bioch. and Mol. Biol., 191: 53–65.
Meyers, B., D. Galbraith, T. Nelson, y V. Agrawal. 2004. Methods for transcriptional profiling in plants. Be
fruitful and replicate, Plant Physiology, 135: 637-652.
Mireia, A., E. Gisbert, M. Díaz, F.J. Moyano, A. Estévez y G. Rotllant. 2010. Ontogenetic changes in
digestive enzymatic capacities of the spider crab, Maja brachydactyla (Decapoda: Majidae). Jour. of
Exp. Mar. Bio. and Eco., 389: 75–84.
Muhlia-Almazán, A., y F.L. García-Carreño. 2003. Digestion physiology and proteolytic enzymes of
crustacean species of the Mexican Pacific Ocean. Cont. Stu. Eas. Pac. Crus., 32: 77-91.
Parma, L., Bonaldo, A., Massi, P., Yúfera, M., Martínez-Rodríguez, G., y P.P. Gatta. 2013. Different early
weaning protocols in common sole (Solea solea L.) larvae: Implications on the performances and
molecular ontogeny of digestive enzyme precursors. Aquaculture, 414–415: 26–35.
Pertea, G., X.Q. Huang, F. Liang, V. Antonescu, R. Sultana, S. Karamycheva, Y. Lee, J. White, F. Cheung, B.
Parvizi, J. Tsai, y J. Quackenbush. 2003. TIGR Gene Indices clustering tools (TGICL): A software
system for fast clustering of large EST datasets. Bioinformatics, 19: 651–652.
Proespraiwong, P., A. Tassanakajon, y V. Rimphanitchayakit. 2010. Chitinases from the black tiger shrimp
Penaeus monodon: phylogenetics, expression and activities. Comp. Biochem. Physiol. Part B:
Biochem. Mol. Biol., 156: 86–96.
Resch-Sedlmeier, G., y D. Sedlmeier. 1999. Release of digestive enzymes from the crustacean
hepatopancreas: effect of vertebrate gastrointestinal hormones. Com. Bioch. And Phys. B., 123: 187-
Rivera-Perez, C., F.L. Garcia-Carreno, y R. Saborowski. 2011. Purification and biochemical characterization
of digestive lipase in whiteleg shrimp. Mar. Biotech., 13: 284–295.
Rodrigues, P.M., T.S. Silva, J. Dias, y F. Jessen. 2012. Proteomics in aquaculture: Applications and trends.
Jour. Prot., 75: 4325-4345.
Rodríguez, A., L. Le Vay, G. Mourente, y D.A. Jones. 1994. Biochemical composition and digestive enzyme
activity in larvae and postlarvae of Penaeus japonicus (Bate), during herbivorous and carnivorous
feeding. Mar. Biol., 118: 45-53.
Rotllant, G., F.J. Moyano, M. Andrés, M. Díaz, A. Estévez y E. Gisbert. 2008. Evaluation of fluorogenic
substrates in the assessment of digestive enzymes in a decapod crustacean Maja brachydactyla larvae.
Aquaculture, 282: 90–96.
Saborowski, R., S. Thatje, J.A. Calcagno, G.A. Lovrich, y K. Anger. 2006. Digestive enzymes in the
ontogenetic stages of the southern king crab, Lithodes santolla. Mar. Biol., 149: 865–873.
Sather, B. T. 1969. A comparative study of amylases and proteinases in some Decapod Crustacea. Comp.
Bioch. Phys., 28: 371-379.
Sánchez-Pla, A., F. Reverter, M.C. Ruíz de Villa, y M. Comabella. 2012. Transcriptomics: mRNA and
alternative splicing. Journal of Neuroimmunology, 248: 23-31.
Schena, M., R. Heller, T. Theriault, K. Konrad,; E. Lachenmeier, y R. Davis. 1998. Microarrays:
Biotechnology’s discovery platform for functional genomics, Trends Biotechnology, 16: 301-306.
Sellos, D., y A. van Wormhoudt. 1999. Polymorphismand evolution of collagenolytic serine protease genes in
crustaceans. Bioch. Biophys. Acta Prot. Struct. Mol. Enzymol., 1432 (2): 419–424.
Shalon, D., S. Smith, y P. Brown. 1996. A DNA microarray system for analyzing complex DNA samples
using two-color fluorescent probe hybridization, Genome Research, 6: 639-645.
Soto, J.C. y C.E. López. 2012. RNA-seq: herramienta transcriptómica útil para el estudio de interacciones
planta-patógeno. Fitosanidad, 16 (2): 101-113.
Srichanun, M., C. Tantikitti, P. Utarabhand, y T.M. Kortner. 2013. Gene expression and activity of digestive
enzymes during the larval development of Asian seabass (Lates calcarifer). Comp. Bioch. and Phys.,
Part B, 165: 1–9.
Truls-Wergeland, H., A. Folkvord, E. Grøtan, y Ø. Sæle. 2013. Genetic ontogeny of pancreatic enzymes in
Labrus bergylta larvae and the effect of feed type on enzyme activities and gene expression Comp.
Bioch. and Phys., Part B, 164: 176–184.
Valdés, A., C. Ibáñez, C. Simó, y V. García-Cañas. 2013. Recent transcriptomics advances and emerging
applications in food science. Trends in Analytical Chemistry, 52: 142–154.
Van Wormhoudt, A., y D. Sellos. 2003. Highly variable polymorphism of the alpha-amylase gene family in
Litopenaeus vannamei (Crustacea decapoda). Jour. Mol. Evol., 57: 659–671.
Wang, Z., M. Gerstein, y M. Snyder. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev.Gen.,
: 57-63.
Ward, J., L. Ponnala, y C. Weber. 2012. Strategies for transcriptome analysis in non-model plants, Ame. Jou.
Bot., 99 (2): 267-276.
Wei, J., X. Zhang, Y. Yua, F. Li,y J. Xiang. 2014. RNA-Seq reveals the dynamic and diverse features of
digestive enzymes during early development of Pacific white shrimp Litopenaeus vannamei. Com.
Bioch. and Phys., Part D (11): 37–44.
Zambombino-Infante, J. L y C.L. Cahu. 2001. Ontogeny of the gastrointestinal tract of marine fish larvae.
Com. Bioch. Phys. Part C, 130: 477-487.
Zhao, Z.Y., Z.X. Yin, S.P. Weng, H.J. Guan, S.D. Li, K. Xing, S.M. Chan, y J.G. He. 2007. Profiling of
differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp
(Litopenaeus vannamei) by suppression subtractive hybridisation. Fish Shellfish Immunology, 22:
–534.