Modelizando el Biorreactor; o cómo Conocer Mejor el Digestivo de sus Peces

Autores/as

  • Fco.Javier Moyano Univ. Almería.

Palabras clave:

digestión, in vitro, modelos, acuicultura

Resumen

El aparato digestivo de cualquier animal no es sino un biorreactor de complejidad variable en el que tienen lugar las reacciones de hidrólisis de los productos que constituyen el alimento. Su funcionamiento está en buena medida controlado por los mismos factores y leyes que los reactores químicos. El conocimiento de dichos factores y el modo en que afectan a la hidrólisis de los alimentos es la base para desarrollar modelos tanto teóricos como prácticos del aparato digestivo. Este último tipo de modelos es lo que se conoce como modelos de digestión in vitro, los cuales son cada vez más utilizados para comprender el funcionamiento del aparato digestivo en diferentes especies y como herramienta para evaluar la cadlidad nutritiva de los piensos. Se hace un repaso general de la modelización del aparato digestivo en especies acuáticas, así como de sus limitaciones y potencialidades.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alarcón, F. J., García-Carreño, F. L., Navarrete del Toro, M. A. (2001). Effect of plant protease inhibitors on digestive proteases in two fish species, Lutjanus argentiventris and L. novemfasciatus. Fish Physiol Biochem 24: 179-189

Alarcón, F. J., Moyano, F. J., Díaz, M. (2002). Evaluation of different protein sources for aquafeeds by an optimised pH-stat system. J Sci Food Agric 82: 697-704

Bassompierre, M., Kristiansen, H. R., McLean, E. (1998). Influence of weight upon in vitro protein digestion in rainbow trout. J Fish Biol 52: 213-216

Boisen, S. (2000). In vitro digestibility methods: history and specific approaches. In Feed evaluation: principles and practice: 153-168. Moughan, P. J., Verstegen, M. W. A., Visser-Reyneveld, M. I. (Eds.). Wageningen: Wageningen Pers

Boisen, S., Eggum, B. O. (1991). Critical evaluation of in vitro methods for estimating digestibility in simple-stomach animals. Nutr Res Rev 4: 141-162

Boisen, S., Moughan, P. J. (1996). Dietary influences on endogenous ileal protein and amino acid loss in the pig. Acta Agricult Scand Sect A-Anim Sci 46: 154-164

Butts, C. A., Monro, J. A., Moughan, P. J. (2012). In vitro determination of dietary protein and amino acid digestibility for humans. Br J Nutr 108: 282-287

Chong, A. S. C., Hasnim, R., Ali, A. B. (2002). Assessment of dry matter and protein digestibilities of selected raw ingredients by discus fish (Symphysodon aequifasciata) using in vivo and in vitro methods. Aquacult Nutr 8: 229-238

Díaz-López, M., Moyano-López, F. J., Alarcón-López, F. J., García-Carreño, F. L., Navarrete del Toro, M. A. (1998). Characterization of fish acid proteases by substrate-gel electrophoresis. Comp Biochem Physiol B Comp Biochem 121: 369-377.

Dimes, L. E., Haard, N. F., Dong, F. M., Rasco, B. A., Forster, I. P., Fairgrieve, W. T., Arndt, R., Hardy, R. W., Barrows, F. T., Higgs, D. A. (1994). Estimation of protein digestibility--II. In vitro assay of protein in salmonid feeds. Comp Biochem Physiol A Physiol 108: 363 – 370

Fenerci, S., Erdal, S. (2005). In vivo and in vitro protein digestibility of Rainbow Trout (Oncorhynchus mykiss Walbaum, 1972) fed steam pressured or extruded feeds. Turk J Fish Aquat Sci 5: 17-22

German, D. P. (2009). Do herbivorous minnows have "plug-flow reactor" guts? Evidence from digestive enzyme activities, gastrointestinal fermentation, and luminal nutrient concentrations. J Comp Physiol B 179: 759-771

Gomes, E. F., Teles, A. O., Gouveia, A., Rema, P. (1998). In vivo and in vitro digestibility of diets and feedstuffs for rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol 14: 109-111

Grabner, M. (1985). An in vitro method for measuring protein digestibility of fish feed components. Aquaculture 48: 97-110

Grabner, M., Hofer, R. (1985). The digestibility of the proteins of broad bean (Vicia faba) and soya bean (Glycine max) under in vitro conditions simulating the alimentary tracts of rainbow trout (Salmo gairdneri) and carp (Cyprinus carpio). Aquaculture 48: 111-122

Gregory, J. F., Quinlivan, E. P., Davis, S. R. (2005). Integrating the issues of folate bioavailability, intake and metabolism in the era of fortification. Trends Food Sci Tech 16: 229-240

Hedrén, E., Mulokozi, G., Svanberg, U. (2002). In vitro accessibility of carotenes from green leafy vegetables cooked with sunflower oil or red palm oil. Int J Food Sci Nutr 53: 445-453

Horn, M. H., Messer, K. S. (1992). Fish guts as chemical reactors: a model of the alimentary canals of marine herbivorous fishes. Mar Biol 113: 527-535

Hur, S. J., Lim, B. O., Decker, E. A., McClements, D. J. (2011). In vitro human digestion models for food applications. Food Chem 125: 1-12

Karasov, W. H., Diamond, J. M. (1988). Interplay between physiology and ecology in digestion. BioScience 38: 602-611.

Kitessa, S., Irish, G. G., Flinn, P. C. (1999). Comparison of methods used to predict the in vivo digestibility of feeds in ruminants. Aust J Agr Res 50: 825-842

Krogdahl, A., Holm, H. (1981). Soybean proteinase inhibitors and human proteolytic enzymes: selective inactivation of inhibitors by treatment with human gastric juice. J Nutr 111: 2045-2051

Lazo, J. P., Romaire, R. P., Reigh, R. C. (1998). Evaluation of three in vitro enzyme assays for estimating protein digestibility in the Pacific white shrimp Penaeus vannamei. J World Aquaculture Soc 29: 441-450

Lemos, D., Lawrence, A. L., III, A. J. S. (2009). Prediction of apparent protein digestibility of ingredients and diets by in vitro pH-stat degree of protein hydrolysis with species-specific enzymes for juvenile Pacific white shrimp Litopenaeus vannamei. Aquaculture 295: 89-98

Levenspiel, O. (1999). Chemical reaction engineering. New York: Wiley.

Mabjeesh, S. J., Cohen, M., Arieli, A. (2000). In vitro methods for measuring the dry matter digestibility of ruminant feedstuffs: comparison of methods and inoculum source. J Dairy Sci 83: 2289-2294

Márquez, L., Øverland, M., Martínez-Llorens, S., Morken, T., Moyano, F. J. (2013). Use of a gastrointestinal model to assess potential amino acid bioavailability in diets for rainbow trout (Oncorrhynchus mykiss). Aquaculture 384–387: 46-55

Márquez, L., Robles, R., Morales, G. A., Moyano, F. J. (2012). Gut pH as a limiting factor for digestive proteolysis in cultured juveniles of the gilthead sea bream (Sparus aurata). Fish Physiol Biochem 38: 859-869.

Martínez-Montaño, E., Peña, E., Focken, U., Viana, M. T. (2010). Intestinal absorption of amino acids in the Pacific bluefin tuna (Thunnus orientalis): In vitro uptake of amino acids using hydrolyzed sardine muscle at three different concentrations. Aquaculture 299: 134-139

Morales, G. A., Moyano, F. J. (2010). Application of an in vitro gastrointestinal model to evaluate nitrogen and phosphorus bioaccessibility and bioavailability in fish feed ingredients. Aquaculture 306: 244 – 251

Morken, T., Moyano, F. J., Márquez, L., Sørensen, M., Mydland, L. T., Øverland, M. (2012). Effects of autoclaving and sodium diformate supplementation to diets on amino acid composition, in vivo digestibility in mink (Neovison vison) and in vitro bioavailability using digestive enzymes from Atlantic salmon (Salmo salar). Anim Feed Sci Technol 178: 84-94

Moyano, F. J., Savoie, L. (2001). Comparison of in vitro systems of protein digestion using either mammal or fish proteolytic enzymes. Comp Biochem Physiol A Mol Integr Physiol 128: 359-36

Nengas, I., Alexis, M. N., Davies, S. J., Petichakis, G. (1995). Investigation to determine digestibility coefficients of various raw materials in diets for gilthead sea bream, Sparus auratus L. Aquacult Res 26: 185-194

Pedersen, B., Eggum, B. O. (1983). Prediction of protein digestibility by an in vitro enzymatic pH-stat procedure. J Anim Physiol Anim Nutr 49: 265-277

Penry, D. L., Jumars, P. A. (1987). Modeling animal guts as chemical reactors. Am Nat 129: 69-96

Perera, E., Moyano, F. J., Rodríguez-Viera, L., Cervantes, A., Martínez-Rodríguez, G., Mancera, J. M. (2010). In vitro digestion of protein sources by crude enzyme extracts of the spiny lobster Panulirus argus (Latreille, 1804) hepatopancreas with different trypsin isoenzyme patterns. Aquaculture 310: 178-185

Rungruangsak-Torrissen, K., Rustad, A., Sunde, J., Eiane, S., Jensen, H., Opstvedt, J., Nygard, E., Samuelsen, T., Mundheim, H., Luzzana, U., Venturini, G. (2002). In vitro digestibility based on fish crude enzyme extract for prediction of feed quality in growth trials. J Sci Food Agric 82: 644-654

Shipton, T. A., Britz, P. J. (2002). Evaluation of an in vitro digestibility technique for the prediction of protein digestibility in the South African abalone, Haliotis midae L. Aquacult Nutr 8: 15-21

Smeets-Peeters, M., Watson, T., Minekus, M., Havenaar, R. (1998). A review of the physiology of the canine digestive tract related to the development of in vitro systems. Nutr Res Rev 11: 45-69

Sultana, Z., Ahmed, S., Iqball, S., Chisty, A. H. (2010). Determination of in vitro protein digestibility of different feed ingredients for Nilotica (Oreochromis nilotica). Bangladesh Res Publ J 4: 87-94

Supannapong, P., Pimsalee, T., A-komol, T., Engkagul, A., Kovitvadhi, U., Kovitvadhi, S., Rungruangsak-Torrissen, K. (2008). Digestive enzymes and in-vitro digestibility of different species of phytoplankton for culture of the freshwater pearl mussel, Hyriopsis (Hyriopsis) bialatus. Aquacult Int 16: 437-453

Swaisgood, H. E., Catignani, G. L. (1991). Protein Digestibility: In Vitro Methods of Assessment. Adv Food Nutr Res 35: 185-236

Tibbetts, S. M., Milley, J. E., Ross, N. W., Verreth, J. A. J., Lall, S. P. (2011a). In vitro pH-Stat protein hydrolysis of feed ingredients for Atlantic cod, Gadus morhua. 1. Development of the method. Aquaculture 319: 398-406.

Tibbetts, S. M., Verreth, J. A. J., Lall, S. P. (2011b). In vitro pH-Stat protein hydrolysis of feed ingredients for Atlantic cod, Gadus morhua. 2. In vitro protein digestibility of common and alternative feed ingredients. Aquaculture 319: 407-416

Ulleberg, E. K., Comi, I., Holm, H., Herud, E. B., Jacobsen, M., Vegarud, G. E. (2011). Human gastrointestinal juices intended for use in in vitro digestion models. Food Dig 2: 52-61

Whelan, C. J., Schmidt, K. A. (2007). Food acquisition, processing, and digestions. In Foraging: behavior and ecology: 141-174. Stephens, D. W., Brown, J. S., Ydenberg, R. C. (Eds.). Chicago: University of Chicago Press

Woolnough, J. W., Monro, J. A., Brennan, C. S., Bird, A. R. (2008). Simulating human carbohydrate digestion in vitro: a review of methods and the need for standardisation. Int J Food Sci Tech 43: 2245-2256

Descargas

Publicado

2013-11-30

Cómo citar

Moyano, F. (2013). Modelizando el Biorreactor; o cómo Conocer Mejor el Digestivo de sus Peces. Avances En Nutrición Acuicola. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/72