Utilización de Algas como Ingrediente Alternativo en la Alimentación de Peces Marinos

Autores/as

  • A.J. Vizcaíno Universidad de Almería-CEIA
  • J.A. Jiménez Universidad de Almería-CEIA
  • J. Camacho Universidad de Almería-CEIA
  • A.M. Barros Universidad de Almería-CEIA
  • G. López Universidad de Almería-CEIA
  • L. Hidalgo Universidad de Almería-CEIA
  • M.I. Sáez Universidad de Almería-CEIA
  • F.G. Acién Universidad de Almería-CEIA
  • M.C. Cerón Universidad de Almería-CEIA
  • T.F. Martínez Universidad de Almería-CEIA
  • F.J. Alarcón Universidad de Almería-CEIA

Palabras clave:

dorada, enzimas digestivas, evaluación nutritiva, intestino, algas, peces marinos, Scenedesmus almeriensis.

Resumen

El empleo de las algas en acuicultura tiene un gran potencial por la creciente preocupación de hacer un uso de los recursos naturales más sostenible y respetuoso con el medio ambiente. Su aplicación en la alimentación de peces tiene interés desde una doble perspectiva; i) reduciendo la dependencia de insumos derivados de las pesquerías, y ii) mejorando el estado de condición de los animales. Como ejemplo aplicado de esta temática, en el presente estudio se evalúa el potencial de la microalga Scenedesmus almeriensis como ingrediente alternativo a la harina de pescado en la alimentación de la dorada (Sparus aurata, L.). En un experimento in vivo se ensayan cinco dietas experimentales en las que se sustituye la proteína de la harina de pescado por biomasa liofilizada de microalga a distintos niveles, y se analiza 1) el crecimiento de los peces y el aprovechamiento nutritivo, 2) la influencia en la composición química y en el perfil de ácidos grasos, 3) los efectos que ejerce en la estructura del hígado e intestino, 4) el efecto sobre diversas actividades enzimáticas digestivas y sobre la ultraestructura de la mucosa intestinal, y finalmente, 4) se realiza una valoración económica de su utilización en piensos para acuicultura.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acién F.G., Fernández J.M., Magán J.J. y Molina E. (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology Advances 30(6), 1344-53.

Alarcón, F.J., Díaz, M., Moyano, F.J. y Abellán, E. (1998) Characterization and functional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiology and Biochemistry 19, 257–267.

Alarcón, F.J., Moyano, F.J. and Diaz, M. (1999) Effect of inhibitors present in protein sources on digestive proteases of juvenile sea bream (Sparus aurata). Aquatic Living Resources 12, 233-238. Andrew, J.E., Holm, J., Kadri, S. y Huntingford, F.A. (2004) The effect of competition on the feeding efficiency and feed handling behavior in gilthead sea bream (Sparus aurata L.) held in tanks. Aquaculture 232, 317-331.

AOAC (1995) Official Methods of Analysis, 16th ed. AOAC International, Washington, DC.

Appler, H.N. y Jauncey, K. (1983) The utilization of a filamentous green alga (Cladophora glomerata (L.) Kutzin) as a protein source in pelleted feeds for Sarotherodon (Tilapia niloticus) fingerlings. Aquaculture 30, 21-30.

Atalah E., Hernández Cruz C.M., Izquierdo M.S., Rosenlund G. y Caballero M.J. (2007) Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquaculture 270, 178-185.

Belarbi H., Molina E. y Chisti Y. (2000) A process for high and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme and Microbial Technology 26, 516–29.

Bell, J.G., Tocher, D.R., Farndale, B.M., McVicar, A.H. y Sargent, J.R. (1999) Effects of essential fatty acid-deficient diets on growth, mortality, tissue histopathology and fatty acid compositions in juvenile turbot (Scophthalmus maximus). Fish Physiology and Biochemistry 20, 263-277.

Benedito-Palos, L. (2010) Sustitución de aceites de pescado en dietas de engorde para dorada (Sparus aurata) ricas en protetínas vegetales. Efectos sobre el crecimiento y los perfiles de ácidos grasos. Tesis Doctoral. Universidad Politécnica de Valencia. 214 pp.

Benemann, J. R. (1992). Microalgae aquaculture feeds. Journal of Applied Phycology 4, 233‐245.

Biswas, B.K., Ji, S.C., Biswas, A.K., Seoka, M., Kim, Y.S., Kawasaki, K-I. y Takii, K. (2009) Dietary protein and lipid requirements for the Pacific bluefin tuna Thunnus orientalis juvenile. Aquaculture 288, 114-119.

Borowitzka, M. A. (1997) Microalgae for aquaculture: opportunities and constraints. Journal of Applied Phycology 9, 393-401.

Bradford, M. (19769 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of Protein-Dye Binding. Analytical Biochemistry 72, 248-254.

Caballero, M.J., Izquierdo, M.S., Kjørsvik, E., Fernández, A.J. y Rosenlund, G. (2004) Histological alterations in the liver of sea bream, Sparus aurata L., caused by short- or long-term feeding with vegetable oils. Recovery of normal morphology after feeding fish oil as the sole lipid source. Journal of Fish Diseases 27, 531-541.

Cerón, M. C., Campos, I., Sánchez, J. F., Acién, F. G., Molina, E. y Fernández-Sevilla, J. M. (2008) Recovery of lutein from microalgae biomass: Development of a process for Scenedesmus almeriensis biomass. Journal of Agricultural and Food Chemistry 56, 11761–11766.

Christie, W.W. (1982) Lipid analysis. Permagon Press Canada Ltd., Toronto, Ont.

Dallaire, V., Lessard, P., Vandenberg, G. y de la Noüe J. (2007). Effect of algal incorporation on growth, survival and carcass composition of rainbow trout (Oncorhynchus mykiss) fry. Bioresource Technology 98, 1433–1439. Davies, S.J., Brown, M.T. y Camilleri, M. (1997) Preliminary assessment of the seaweed orphyra purpurea n artificial diets for thick-lipped grey mullet (Chelon labrosus). Aquaculture 152, 249-258.

De Lorgeril, M., Renaud, S., Mamelle, N., Salen, P., Martin, J.L., Monjaud, I., Guidollet, J., Touboul, P. y Delaye, J. (1994) Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 343, 1454-1459.

De Lorgeril, M., Salen, P., Martin, J.L., Monjaud, I., Delaye, J. y Mamelle, N. (1999) Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 99, 779-785.

De Pauw, N. y Persoone, G. (1988) Microalgae for aquaculture. In: Borowitzka, M.A. y Borowitzka, L.J. (Eds.). Microalgal Biotechology. Cambridge Univ. Press, Cambridge, pp. 197-221.

Ehrember, M. (1980) Microalgae: a fish faro feed for the future. Fish Farming International 7, 15-18.

El-Sayed, A.F.M. (1994) Evaluation of soybean meal, Spirulina meal and chicken offal meal as protein sources for silver seabream (Rhabdosargus sarba) fingerlings. Aquaculture 127, 169-176.

Ergün, S., Soyuturk, M., Guroy, B., Guroy, D. y Merrifield, D. (2009). Influence of Ulva meal on growth, feed utilization and body composition of juvenile Nile tilapia (Oreochromis niloticus) at two levels of dietary lipid. Aquaculture International 17, 355‐361.

F.A.O. (2010) El estado mundial de la pesca y la acuicultura. FAO Viale delle Terme di Caracalla, Roma, Italia, 242 p.

Froyland, L., Lie, O. y Berge, R.K. (2000) Mitochondrial and peroxisomal beta-oxidation capacities in various tissues from Atlantic salmon Salmo salar. Aquaculture Nutrition 6, 85-89.

Ganuza, E., Benítez-Santana, T., Atalah, E., Vega-Orellana, O., Ganga, R. e Izquierdo, M.S. (2008) Crypthecodinium cohnii and Schizochytrium sp. as potential substitutes to fisheries-derived oils from seabream (Sparus aurata) microdiets. Aquaculture 277, 109–116. Gómez-Requeni, P., Mingarro, M., Calduch-Giner, J.A., Médale, F., Martin, S.A.M., Houlihan, D.F., Kaushik, S. y Pérez-Sánchez, J. (2004) Protein growth performance, amino acid utilization and

somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 232, 439-510.

Hasan, M.R. y Chakrabarti, R. (2009) Use of algae and aquatic macrophytes as feed in small-scale aquaculture: a review. FAO Fisheries and Aquaculture Technical Paper. no. 531. Rome, FAO. 2009. 123p. Ibeas, C., Cejas, J., Gómez, T., Jerez, S. y Lorenzo, A. (1996) Influence of dietary n−3 highly unsaturated fatty acids levels on juvenile gilthead seabream (Sparus aurata) growth and tissue fatty acid composition. Aquaculture 150, 91-102. Ibeas, C., Cejas, J.R., Fores, R., Badía, P., Gómez, T. y Lorenzo Hernández A. (1997) Influence of eicosapentaenoic to docosahexaenoic acid ratio (EPADHA) of dietary lipids on growth and fatty acid composition of gilthead seabream (Sparus aurata) juveniles. Aquaculture 150, 91-102. Isik, O., Sarihan, E., Kusvuran, E., Gül, Ö. y Erbatur, O. (1999) Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris in the algae-rotifer-fish larvae food chains. Aquaculture 174, 299-311.

Izquierdo, M.S., Montero, D., Robaina, L., Caballero, M.J., Rosenlund, G. y Ginés, R. (2005) Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture 250, 431-444.

Jackson, A. (2009) Fish in - fish out ratios explained. Aquaculture Europe 34, 5-10.

Kaushik, S.J. y Troell, M. (2010) Taking the Fish-in Fish-out ratio a step further. Aquaculture Europe 35, 15-17.

Kumar, M., Gajaria, S.C. y Radha, K.S. (2004) Growth and development of catla (Catla catla) fed with different levels of diet containing Spirogyra sp. Bioresource Technology 95, 73–76.

Kunitz, M. (1947) Crystalline soybean trypsin inhibitor II. General properties. Journal of General Physiology 30, 291–310.

Laemmli, U.K. (1970) Cleavage of Structural Proteins during the Assembly of the head of Bacteriophage T4. Nature 227, 680–685.

Lahaye, M., Gomez-Pinchetti, J.L., Rio, M.J. y García-Reina, G. (1995) Natural decoloration, composition and increase in dietary fibre content of an edible marine algae, Ulva rigida (Chlorophyta) grown under different nitrogen conditions. Journal of the Science of Food and Agriculture 68, 99-104.

Lee, S.M. y Cho, S.H. (2009) Influences of dietary fatty acids on growth, body composition and blood chemistry in juveniles fad cod (Hexagrammos otakii Jordan et Starks). Aquaculture Nutrition 15, 19–28.

Lee, S.M. y Kim, K.D. (2001) Effects of dietary protein and energy levels on the growth, protein utilization and body composition of juvenile masu salmon (Oncorhynchus masou Brevoort). Aquaculture Research 32, 39–45.

Liu, S., Zhang, X., Zang, X. y Liu, B., Arunakumara, K.K.I.U., Xu D. y Zhang, X. (2008) Growth, feed efficiency, body muscle composition, and histology of flounder (Paralichthys olivaceus) fed GH transgenic Synechocystis. Aquaculture 277, 78-82. Lu, J., Takeuchi, T. y Satoh, H. (2004) Ingestion and assimilation of three species of freshwater algae by larval tilapia Oreochromis niloticus. Aquaculture 238, 437-449.

Madsen, L., Froyland, L., Dyroy, E., Helland, K. y Berge, R.K. (1998) Docosahexaenoic and eicosapentaenoic acids are differently metabolized in rat liver during mitochondria and peroxisome proliferation. Journal of Lipid Research 39, 583- 593.

Martins, D., Valente, L.M.P. y Lall, S.P. (2007) Effects of dietary lipid level on growth and lipid utilization by juvenile Atlantic halibut (H. hippoglossus L.). Aquaculture 263, 150-158.

Medina, A.R., Grima, E.M., Jiménez, G.A. y Gónzalez, M.J. (1998) Downstream processing of algal polyunsaturated fatty acid. Advanced BioTechnology 16 (3), 517-580.

Merrifield, D.L., Dimitroglou, A., Bradley, G., Baker, R.T.M. y Davies, S.J. (2009) Soybean meal alters autochthonous microbial populations, microvilli morphology and compromises intestinal enterocyte integrity of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases 32, 755–766.

Mourente, G. y Vázquez, R. (1996) Changes in the content of total lipid, lipid classes and fatty acids of developing eggs and unfed larvae of the Senegal sole, Solea senegalensis Kaup. Fish Physiology and Biochemistry 15, 221-235.

Muller-Feuga, A. (2000) The role of microalgae in aquaculture: situation and trends. Journal of Applied Phycology 12, 527-534.

Mustafa, M.G. y Nakagawa, H. (1995) Effects of algae meal as feed additive on growth, feed efficiency, and body composition in red sea bream. Fisheries Science Tokyo 61, 25-28.

Mustafa, M.G. y Nakawaga, H. (1995) A review: dietary benefits of algae as an additive in fish feed. Badmidgeh-The Israeli Journal of Aquaculture 47, 155-162.

Mustafa, M.G., Takeda, T., Umino, T., Wakamatsu, S. y Nakagawa, H. (1994) Effects of Ascophyllum and Spirulina meal as feed additives on growth performance and feed utilization of red sea bream, Pagrus major. Journal Faculty of Applied Biological Science 33, 125-132.

Nakagawa, H. (1997) Effect of dietary algae on improvement of lipid metabolism in fish. Biomedicin and Pharmacotherapy 51, 345-348.

Nakagawa, H., Kasahara, S. y Sugiyama, T. (1987) Effect of Ulva meal supplementation on lipid metabolism of black sea bream, Acanthopagrus schelegeli (Bleeker). Aquaculture 62(2), 109-121.

Nakagawa, H., Takeda, T.A., Tetsuya, U., Mustafa, M.D.G. y Yamashita, H. (1995) Effects of feeding regime on biometric parameters and hepatic enzyme activities of young red sea bream, Pagrus major. Applied Biological Science, Higashi-Hiroshima 34(2), 167-178.

Nakagawa, H., Umino, T. y Tasaka, Y. (19979 Usefulness of Ascophyllum meal as a feed additive for red sea bream, Pagrus major. Aquaculture 151(1-4), 275-281.

Nandeesha, M.C., Gangadhar, B., Varghese, T.J. y Keshavanash, P. (1998) Effects on feeding spirulina platenses on the growth, proximote composition and organoleptic quality of common carp, Ciprynus carpio, L. Aquaculture Research 29, 305-312.

Nandeesha, M.C., Gangadhara, B., Manissery, J. K. y Venkataraman, L.V. (2001) Growth performance of two Indian major carps, catla (Catla catla) and rohu (Labeo rohita) fed diets containing different levels of Spirulina platensis. BioresourceTechnology 80(2), 117-120.

Naylor, R.L., Goldberg, R.J., Primavera, J.H., Kaustky, N., Beveridge, M.C., Clay, J., Folk, C., Lubchenco, J., Mooney, H. y Troell, M. (2000) Effect of aquaculture on world supplies. Nature 405, 1017-1024.

Nematipour, G.R., Nakagawa, H., Nanba, K., Kasahara, S., Tsujimura, A. y Akira, A. (1987) Effect of Chlorella -extract supplement to diet on lipid accumulation of ayu. Nippon Suisan Gakkaishi 53, 1687-1692. Nogales, S., Tomás-Vidal, A., Martínez-Llorens, S. y Jover-Cerdá, M. (2010) Sunflower meal as a partial substitute in juvenile sharpsnout sea bream (Diplodus puntazzo) diets: Amino acid retention, gut and liver histology. Aquaculture 298, 275-281.

Olguín, E.J. (2012) Dual purpose microalgae bacteria‐based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery. Biotechnology Advances. 30(5), 1031–1046.

Oliveira, M.N., Ponte-Freitas, A.L., Urano-Carvalho, A.F., Taveres-Sampaio, T.M., Farias, D.F., Alves-Teixera, D.I., Gouveia, S.T., Gomes-Pereira, J. and Castro-Catanho de Sena, M.M. (2009) Nutritive and non-nutritive attributes of washed-up seaweeds from the coast of Ceará, Brazil. Food Chemistry 11, 254-259.

Olvera-Novoa, M.A., Domínguez-Cen, I.J., Olivera Castillo, L. y Martínez-Palacios, C.A. (1998) Effects of the use of the microalga Spirulima maxima as fish meal replacements in diets for tilapia, Oreochromis mossambicus, Peters, fry. Aquaculture Research 29, 709-715.

Piedecausa, M.A., Mazón, M.J., García García, B., Hernández, M.D. (2006) Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo). Aquaculture 263, 211-219.

Pinchetti, J.L.G., Fernández, E.C., Díez, P.M. y Reina, G.G. (1998) Nitrogen availability influences the biochemical composition and photosynthesis of tank cultivated Ulva rigida (Chlorophyta). Journal of Applied Phycology 10, 383-389.

Pulz, O. y Gross, W. (2004) Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology 65, 635‐648.

Rico, R.M. (2012) Efecto fisiológico y microbiológico del uso de algas en la alimentación de peces como sustitutivo de harina de pescado. Hacia una acuicultura sostenible. Tesis Doctoral. Universidad de Málaga, España. 201 p. Robaina, L., Izquierdo, M.S., Moyano, F.J., Socorro, J., Vergara, J.M., Montero D. (1998) Increase of the dietary n−3/n−6 fatty acid ratio and addition of phosphorus improves liver histological alterations

induced by feeding diets containing soybean meal to gilthead seabream, Sparus aurata. Aquaculture 161, 281-293.

Robin, J.H. y Vincent, B. (2003) Microparticulate diets as first food for gilthead sea bream larva (Sparus aurata): study of fatty acid incorporation. Aquaculture 225(1-4), 463-474.

Rodríguez-Ruiz, J., Belarbi, E. H., García, J. L. y López, D. (1998) Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. Biotechnology Techniques 12, 689–691.

Sánchez Fernández, J.F. (2008) Caracterización de la nueva microalga Scenedesmus almeriensis. Producción en fotobiorreactores internos y externos. Tesis Doctoral. Universidad de Almería, España. 165 p.

Sánchez-Lozano, N., Vidal, A.T., Martínez-Llorens, S., Nogales-Mérida, S., Espert-Blanco, J., Moñino-López, A., Pla-Torres, M. y Jover-Cerdá, M. (2007) Growth and economic profit of gilthead sea bream (Sparus aurata L.) fed sunflower meal. Aquaculture 272, 528-534.

Sargent, J.R., Tocher, D.R. y Bell, J.G. (2002) The lipids. En: Fish Nutrition, Third Edition. Editado por Halver, J.E. y Hardy, R.W. Academic Press, New York, pp: 181-257.

Satoh, K.I., Nakagawa, H. y Kasahara, S. (1987) Effect of Ulva meal supplementation on disease resistance of red sea bream. Nippon Suisan Gakkaishi 53(7), 1115-1120.

Silva, F.C.P., Nicoli, J.R., Zambonino‐Infante, J. L., Le Gall, M.M., Kaushik, S. y Gatesoupe, F.G. (2010) Influence of partial substitution of dietary fish meal on the activity of digestive enzymes in the intestinal brush border membrane of gilthead sea bream, Sparus aurata and goldfish, Carassius auratus. Aquaculture, 306(1‐4), 233-237. Spolaore, P., Joannis-Cassan, C., Duran, E. e Isambert, A. (2006) Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101 (2), 87–96.

Tacon, A.G.J. y Forster, I.P. (2003) Aquafeeds and the environment: Policy implications. Aquaculture 226, 181‐189.

Tocher, D.R. (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science 11, 107-184.

Villalta, M., Estévez, A., Bransden, M.P y Bell, J.G. (2007) Effects of dietary eicosapentaenoic acid on growth, survival, pigmentation and fatty acid composition in Senegal sole (Solea senegalensis) larvae during the Artemia feeding period. Aquaculture Nutrition 13, 1-10.

Volpe, J.P. (2005) Dollars without sense: The bait for big‐money tuna ranching around the world. BioScience 55(4), 301-302.

Walter, H.E. (1984) Proteinases: methods with hemoglobin, casein and azocoll as substrates. En: Methods of Enzymatic Analysis. Vol. V, pp. 270–277. Edited by H. J. Bergmeyer. Verlag Chemie, Weinham. Wassef, E.A., El-Masry, M.H. y Mikhail, F.R. (2001) Growth enhancement and muscle structure of striped mullet, Mugil cephalus L., fingerlings by feeding algal meal-based diets. Aquaculture Research 32, 315-322.

Yamaguchi, K. (1997) Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. Journal of Applied Phycology 8, 487-502.

Zhao, M., Xie, S., Zhe, X., Yang, Y., Gan, L. y Song, L. (2006) Effect of inclusion of blue-gree algae meal on growth and accumulation of microcystins in gibel carp (Carassius auratus gibelio). Journal of Applied Ichthyology 22, 72-78.

Descargas

Publicado

2013-11-30

Cómo citar

Vizcaíno, A., Jiménez, J., Camacho, J., Barros, A., López, G., Hidalgo, L., Sáez, M., Acién, F., Cerón, M., Martínez, T., & Alarcón, F. (2013). Utilización de Algas como Ingrediente Alternativo en la Alimentación de Peces Marinos. Avances En Nutrición Acuicola. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/63