Chitin and Chitosan in Aquaculture

Autores/as

  • Josafat Marina Ezquerra Brauer Universidad de Sonora

Palabras clave:

Chitin, chitosan, aquaculture

Resumen

Aquaculture is an important economic activity on many countries. However face several challenges mainly associated to feed and diseases development. Among the strategies applied to avoid or prevent those problems are the use of chitin and its derivate. Chitin consists of β-1-4-linked N-acetylglucosamine residues and is estimated as the second most important polysaccharide found in the nature. The main sources exploited are crustaceans. Chitin and chitosan are considerably versatile and promising biomaterials. The effect of chitin on several cultivated organism it was reported. Detecting that the inclusion of chitin in feed farmed organism improves not only the growth and feed conversion also stimulated the immune system against virus and protozoea by increasing the serum lysozyme; moreover the costs of production decrease. However, oversupplies of chitin in some fish species induce excessive deposition of fat liver, heart and carcass. Whereas chitosan, the deacetylated chitin derivate, considering more useful and interesting bioactive polymer, it was evaluated as encapsulated bioactive compounds during the culture of some farmed organisms. Chitosan encapsulated vitamin C, improve its liberation without lost its bioavailability. Although, chitosan can encapsulate antigen against white spot syndrome virus and vaccines, its efficacy depends of the virus. Moreover, chitosan posses properties, that may be useful to improve aquaculture wastewater quality. There are still many questions about the chitin and chitosan application in aquaculture, as chitosan encapsulated stability, the right chitin concentration according with the cultured specie, among others.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aiba S.I. (1994) Preparation of N-acetylchitooligosaccharides by hydrolysis of chitosan with chitinase followed by N-acetylation. Carbohydrate Research, 265, 323–328.

Akiyama D.M., Dominy W.G. & Lawrence A.L. (1992) Panaeid shrimp nutrition. In Marine Shrimp Culture: Principles and Practice (Fast, A.W. & Lester, L.J. eds), pp. 535-568. Elsevier Science Publishers, Amsterdam, the Netherlands.

Alishahi A. & Aïder M. (2012). Applications of chitosan in the seafod industry and aquaculture: A review. Food Bioprocess Technology, 5, 817-830.

Alishahi A., Mirvaghefi A., Tehrani M. R., Farahmand H., Koshio, S., Dorkoosh F. A., et al. (2011). Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non- specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydrate Polymers, 86, 142-146.

Anderson D.P. & Siwicki A.K. (1994). Duration of protection against Aeromonas salmonicida in brook trout immunostimulated with glucan or chitosan by injection or immersion. The Progressive Fish-Culturist, 56, 258–261.

Anderson D.P., Siwicki A.K. & Rumsey G.L. (1995). Injection or immersion delivery of selected immunostimulants to trout demonstrate enhancement of nonspecific defense mechanisms and protective immunity. In Diseases in Asian aquaculture, 11 fish health section (Shariff M., Subasighe R.P., Arthur J.R. eds.), pp. 413–426. Asian Fisheries Society, Manila, Philippines.

Cha S.H., Lee J.S., Song Ch.B., Lee K.J. & Jeon Y.J. (2008). Effects of chitosan-coated diet on improving wáter quality and innate immunity in the olive flounder, Paralichthys olivaceus. Aquaculture, 278, 110-118.

Cheba B. A. (2011). Chitin and chitosan: Marine biopolymers with unique properties and versatile applications. Global Journal of Biotechnology & Biochemistry 6, 149-153.

Chung, Y-C. (2010). Improvement of aquaculture wastewater using chitosan of different degrees of deacetylation. Environmental Technology, 27, 119-1208.

Cuesta A., Esteban M.A. & Mesequer J. (2003). In vivo effect of chitin particles on the innate celular immune system of gilthead seabream (Saparus aurata L.). Fish Shellfish Immunology, 15, 1-11.

Deladino L., Anbinder P. S., Navarro A. S., & Martino M. N. (2008). Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydrate Polymer, 71, 126-134.

Deshimaru O. & Kuroki K. (1974) Studies on a purified diet for prawn. I. Basal composition of diet. Bulletin of the Japanse Society for the Science of Fish, 40, 413-419.

Duta P.K. & Duta J. (2004). Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific & Industrial Research, 63, 20-31.

Ezquerra, J. 2015. Chitin and Chitosan in Aquaculture. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-

Cavazos, D. A., Gamboa-Delgado, J., Rivas Vega, M. y Miranda Baeza, A. (Eds), Nutrición Acuícola: Investigación y Desarrollo, Universidad Autónoma

de Nuevo León, San Nicolás de los Garza, Nuevo León, México, ISBN 978-607-27-0593-7, pp. 220-233.

Esteban M.A., Cuesta A., Ortuno J. & Meseguer J. (2001). Immunomodulatory effects of dietary intake of chitin on gilthead seabream (Sparus aurata L.) innate immune system. Fish & Shellfish Immunology, 11, 303-315.

Fernández F., Miquel A.G., Cordoba M., Varas M., Meton I., Casera A. & Baanante V. (2007). Effects of diets with distintict protei-carbohydrate ratios on nutritient digestibililty, growth perfomance, body composition and liver intermediary enzyme activities in gilthead sea bream (Sparus aurate L.) fingerlings. Journal of Experimentla Marine Biology and Ecology, 343, 1-10.

Fierro S., Sànchez-Saavedra M.P., Copalcúa C. (2008). Nitrate and phosphate removal by chitosan immobilized Senedsmus. Bioresource Technology, 99, 1274-1279.

García-Morales M.H., Pérez-Velázquez M., González-Félix M.L., Burgos-Hernández A., Cortez-Rocha M.O., Bringas-Alvarado L. & Ezquerra-Brauer J.M. (2015). Effects of fumonisin B1-containing feed on the muscle proteins and ice-storage life of white shrimp (Litopenaeus vannamei). Journal of Aquatic Food Product Technology, 24, 340-353.

Gamage A. & Shahid F. (2007). Use of chitosan for the removal of metal ion contaminants and proteins from water. Food Chemistry, 104, 989-996.

Hatlen B., Grisalde-Helland B. & Helland S.J. (2005). Growth, feed utilization adn body composition in two size groups of Atlantic halibut (Hippooglossus hippoglossus) fed diets differing in protein and carbohydrate content. Aquaculture, 249, 401-408.

Hilton J.W. & Atkinson J.L. (1982). Response of rainbow trout to increased levels of availabel carbohydrate in practical diets. Brithish Journal of Nutrition, 47, 597-607.

Ilyina A.V., Tatarinova N.Y. & Varlamov V.P. (1999) The preparation of low-molecular-weight chitosan using chitinolytic complex from Streptomyces kurssanovii. Process Biochemistry, 34, 875–878.

Kafetzopoulos D., Martinou A. & Bouriotis V. (1993). Bioconversion of chitin to chitosan: Purification and characterization of chitin deacetylase from Mucor rouxii. Proceedings of the National Academy of Sciences of the United States of America, 90, 2564-2568.

Kawakami H., Shinohara N.& Sakai M.(1998) The non-specific immunostimulation and adjuvant effects of Vibrio anguillarumbactewrin, M-glucan, chitin and Freund's complete adjuvant against Pasteurella piscicida infection in yellowtail. Fish Pathology, 33, 287–292.

Kitabayashi K., Kurata H. & Ishihawa S. (1971) Studies on formula feed for Kuruma prawn I. On the relationship among glucosamine, phosphorus, and calcium. Bulletin of Tokai Regional Fisheries Research Laboratory, 65, 91-105.

Kumar MNVR. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46, 1-27.

Kurita K., Sannan T. & Iwakura Y. (1977). Studies on chitin, 4: Evidence for formation of block and random copolymers of N-acetyl-D-glucosamine and D-glucosamine by hetero- and homogeneous hydrolyses. Macromolecular Chemistry and Pysics, 178, 3197-3202.

Ezquerra, J. 2015. Chitin and Chitosan in Aquaculture. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-

Cavazos, D. A., Gamboa-Delgado, J., Rivas Vega, M. y Miranda Baeza, A. (Eds), Nutrición Acuícola: Investigación y Desarrollo, Universidad Autónoma

de Nuevo León, San Nicolás de los Garza, Nuevo León, México, ISBN 978-607-27-0593-7, pp. 220-233.

Lindsay G.J.H. (1984) Adsorption of rainbow trout (Salmo gairdneri) gastric lysozymes and chitinase by cellulose and chitin. Aquaculture 42, 241-246.

Lu Ch-H. & Ku Ch-Ch. (2010). Effects of shrimp waste meal on growth performance and chtinase activity in juvenile cobia (Rachycentron canadum). Aquaculture Research, 44, 1190-1195.

Luertsutthiwong P., Sutti S. & Powtongsook S. (2009). Optimization of chitosan flocculation for phytoplankton removal in shrimp culture ponds. Aquaculture Engineering, 41, 188-193.

Meshkini S., Tafy A-A., Tukmechi A. & Farhang-Pajuh F. (2012). Effects of chitosan on hematological parameters and stress rsistance in rainbow trout (Oncorhynchus myksiss). Veterinary Research Forum, 3, 49-54.

Muzzarelli R.A.A. (1977). Enzymatic synthesis of chitin and chitosan. Occurrence of chitin. In Chitin (Muzzarelli, R.A.A. eds.), pp. 5–44. Pregamon Press, New York, NY,

Muzzarelli R.A.A (1973). Natural Chelating Polymers, Pergamon Press, New York, p. 83.

Niu J. Liu Y.J., Lin H.Z., Mai K.S., Yang H.J., Liang G.Y. & Tian L.X. (2011). Effect of dietary chitosan on growth, survival and stress tolerance of postlarval shrimp, Litopenaeus vannamei. Aquaculture Nutrition, 17, e406-e412.

No, H.K. & Meyers S.P. (1995). Preparation and characterization of chitin and chitosan-A review. Journal Aquatic of Food Product and Technology, 2, 27–52.

Rajeshkumar S., Ishaq Ahmed V. D., Parameswaran V., Sudhakaran R., Sarath Babu V., & Sahl Hameed A. S. (2008). Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio anguillarum. Fish & Shellfish Immunology, 25, 47-56.

Rajeshkumar S., Venkatesan C., Sarathi M., Sarathbabu V., Thomas J., & Anver Basha, K. (2009). Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish & Shellfish Immunology, 26, 429-437.

Renault F., Sancey B., Badot P-M. & Crini G. (2009). Chitosan for coagulation/flocculation processes –An econfriendly approach. European Polymer Journal, 45, 1337-1348.

Rivas-Aravena A., Sandino A.M. & Spencer e. (2013). Nanoparticles and microparticles of polymers and polysaccharides to administer fish vaccines. Biological Research, 46, 407-419.

Roberts G.A.F (1992). Structure of chitin and chitosan. In Chitin Chemistry (Roberts G.A.E., ed.) pp. 85–91. Palgrave Macmillan: London, UK, 1992.

Sakai M., Kamiya H., Ishii S., Atsuta S. & Kobayashi M. (1992) The immunostimulating effects of chitin in rainbow trout, Oncorhynchus mykiss. In Diseases in Asian aquaculture I,fFish health sectio, Shariff M., Subasighe R.P., Arthur J.R. (Eds.). Asian Fisheries Society, Manila, Philippines, pp. 413–417.

Schep L. J., Tucker I. G., Young G., Ledger R., & Butt, A. G. (1999). Controlled release opportunities for oral peptide delivery in aquaculture. Journal of Controlled Release, 59, 1-14.

Shiau S-Y. & Yu Y-P. (1999). Dietary supplementation of chitin and chitosan depresses growth in tilapia, Oreochromis niloticus×O. aureus. Aquaculture, 179, 439-446.

Ezquerra, J. 2015. Chitin and Chitosan in Aquaculture. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-

Cavazos, D. A., Gamboa-Delgado, J., Rivas Vega, M. y Miranda Baeza, A. (Eds), Nutrición Acuícola: Investigación y Desarrollo, Universidad Autónoma

de Nuevo León, San Nicolás de los Garza, Nuevo León, México, ISBN 978-607-27-0593-7, pp. 220-233.

Siwicki A.K., Anderson D.P.& Rumsey G.L. (1994) Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Veterinary Immunology and Immunopathology, 41, 125–139.

Tan Q., Xie S., Zhu X., Lei W. & Yang Y. (2007). Effect of dietary carbohydrate-to-lipid ratios on growth and feed utilization in Chisese longsnout catfish (Leiocassis longrisotris Gunther). Journal of Applied Ichthyology, 23, 605-610.

Tian J., Yu J., & Sun X. (2008). Chitosan microspheres as candidate plasmid vaccine carrier for oral immunization of Japanese flounder (Paralichthys olivaceus). Veterinary Immunology and Immunopathology, 126, 220-229.

Tokuyasu K., Mitsutomi M., Yamaguchi I., Hayashi K. & Mori Y. (2000). Recognition of chitooligosaccharides and their N-acetyl groups by putative subsites of chitin deacetylase from a deuteromycete, Colletotrichum lindemuthianum. Biochemistry, 39, 8837-8843.

Vahedi G. & Ghodratizadeh S. (2011). Effect of chitin supplemented diet on innate immune response of raibow trout. World Journal of Fish and Marine Sciences, 3, 509-513.

Wang S.H. & Chen J.Ch. (2005). The protective effect of chitin and chitosan against Vibrio alginolyticus in White shrimp Litopenaeus vannamei. Fish & Shellfish Immunology, 19, 191-204.

Wang Y. & Li J. (2010). Effects of chitosan nanoparticles on survival, growth and meat quality of tilapia, Orechromis nilotica. Nanotoxicology, 5, 425-431.

Younes I. & Rinaudo M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13, 1133-1174.

Zhan Y., Zhou Z., Liu Y., Cao Y., He S., Huo F., Quin C., Yao B & Ringo E. (2014). High-yield production of a chitinase from Aeromonas veronii B565 as a potential feed supplement for warm-water aquaculture. Applied Microbiology Biotechnology, 98, 1651-1662.

Descargas

Publicado

2015-11-30

Cómo citar

Ezquerra Brauer, J. M. (2015). Chitin and Chitosan in Aquaculture. Avances En Nutrición Acuicola. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/42