Habilidad de tres especies de peces tropicales de hábitos carnívoros para utilizar carbohidratos: Robalo blanco (Centropomus undecimalis), Mero rojo (Epinephelus morio) y Pargo canané (Ocyurus chrysurus)

Autores/as

  • Martin Arenas Universidad Nacional Autónoma de México
  • Alvaro Barreto Universidad Nacional Autónoma de México
  • Maria Gabriela Gaxiola Cortés Universidad Nacional Autónoma de México

Palabras clave:

peces carnívoros, carbohidratos, metabolismo digestivo e intermediario

Resumen

El robalo blanco (Centropomus undecimalis), mero rojo (Epinephelus morio) y pargo canané (Ocyurus chrysurus) son peces de hábitos carnívoros con potencial para ser cultivados, son importantes comercial y recreativamente en el Golfo de México. Los avances en la investigación sobre los requerimientos nutricionales para el desarrollo de alimentos balanceados en estas especies reportan un alto requerimiento de proteína en el alimento (40-50%). Por lo tanto, la habilidad de estas especies de peces para utilizar carbohidratos (20%, almidón) ha sido objeto de estudio. Indicadores de eficiencia alimenticia, utilización metabólica y regulación del metabolismo digestivo e intermediario de la glucosa son discutidos en este escrito. El robalo blanco y pargo canané se adaptan digestivamente a los carbohidratos, pero no el mero rojo. El pargo canané experimenta condiciones agudas de hiperglucemia en estado postprandial en comparación con las otras especies. Las tres especies de peces exhiben un incremento en el potencial de glucolisis y reducción del potencial de gluconeogénesis después de consumir carbohidratos. El aprovechamiento nutricional de los carbohidratos por las tres especies se encuentra estrechamente relacionado con la activación de la enzima glucoquinasa (GK) o hexoquinasa IV. La concentración de carbohidratos en el alimento es un factor determinante en la activación de la enzima GK. El robalo blanco presenta una mayor habilidad para aprovechar nutricionalmente los carbohidratos en comparación con el mero rojo y pargo canané.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahumada-Hernández, R. I., Alvarez-González, C. A., Guerrero-Zárate, R., Martínez-García, R., Camarillo-Coop, S., Sánchez-Zamora, A., Gaxiola-Cortes, M. G., Palomino-Albarrán, I. G., Tovar-Ramírez, D., & Gisbert, E. (2014). Changes of digestive enzymatic activity on yellowtail snapper (Ocyurus chrysurus) during initial ontogeny. International Journal of Biology, 6(4), 110–118. https://doi.org/10.5539/ijb.v6n4p110

Arenas, M., Álvarez-González, A., Barreto, Á., Sánchez, A., Cuzon, G., & Gaxiola, G. (2021). Evaluation of protein: lipid ratio on growth, feed efficiency, and metabolic response in juvenile yellowtail snapper Ocyurus chrysurus (Bloch, 1791). Latin American Journal of Aquatic Research, 49(2), 329–341. https://doi.org/10.3856/vol49-issue2-fulltext-2660

Arenas, M., Álvarez-González, A., Barreto, A., Sánchez, A., Suárez-Bautista, J., Escalante, K., & Gaxiola, G. (2021). Effect of dietary carbohydrates on growth performance, feed efficiency and glucose metabolism in common snook (Centropomus undecimalis) and yellowtail snapper (Ocyurus chrysurus) juveniles. Aquaculture, 543(May), 736958. https://doi.org/10.1016/j.aquaculture.2021.736958

Arenas, M., Álvarez-González, C. A., Barreto, A., Sánchez-Zamora, A., Suárez-Bautista, J., Cuzon, G., & Gaxiola, G. (2021). Physiological and metabolic protein-sparing effects of dietary lipids on common snook Centropomus undecimalis (Bloch, 1792) juveniles. Aquaculture Nutrition, July 2020, 1–14. https://doi.org/10.1111/anu.13250

Arreguín-Sánchez, F., & Arcos-Huitrón, E. (2011). La pesca en México: estado de la explotación y uso de los ecosistemas. Hidrobiológica, 21(3), 431–462. www.ecopath.org

Barreto-Altamirano, A. F. (2016). Evaluación de la digestibilidad in vitro y aparente en distintas fuentes de proteína en juveniles de pargo canané (Ocyurus chrysurus). Tesis de maestría. Universidad Nacional Autónoma de México.

Blewett, D. A., Hensley, R. A., & Stevens, P. W. (2006). Feeding habits of common snook, Centropomus undecimalis, in Charlotte Harbor, Florida. Gulf and Caribbean Research, 18, 1–13. https://doi.org/10.18785/gcr.1801.01

Boonanuntanasarn, S., Kumkhong, S., Yoohat, K., Plagnes-Juan, E., Burel, C., Marandel, L., & Panserat, S. (2018). Molecular responses of Nile tilapia (Oreochromis niloticus) to different levels of dietary carbohydrates. Aquaculture, 482(September 2017), 117–123. https://doi.org/10.1016/j.aquaculture.2017.09.032

Brulé, T., & Canché, L. G. R. (1992). Food habits of juveniles red groupers, Epinephelus morio (Valenciennes, 1828), from Campeche bank, Yucatan, Mexico. Bulletin of Marine Science, 52(2), 772–779.

Brulé, T., Nóh-Quiñones, V. E., Sánchez-Crespo, M., Colás-Marrufo, T., & Pérez-Díaz, E. (2008). Composición de las capturas comerciales del complejo mero-pargo en el sureste del Golfo de México e implicaciones para el manejo de su pesquería comercial. Gulf and Caribbean Fisheries Institute, 61, 198–209.

Buddington, R. K., Chen, J. W., & Diamond, J. (1987). Genetic and phenotypic adaptation of intestinal nutrient transport to diet in fish. The Journal of Physiology, 393(1), 261–281. https://doi.org/10.1113/jphysiol.1987.sp016823

Caballero-Chávez, V. (2012). Evaluación de la pesquería de robalo blanco Centropomus undecimalis en Ciudad del Carmen, Campeche. Ciencia Pesquera, 20(2), 35–42.

Carvalho-Filho, A., de Oliveira, J., Soares, C., & Araripe, J. (2019). A new species of snook, Centropomus (Teleostei: Centropomidae), from northern South America, with notes on the geographic distribution of other species of the genus. Zootaxa, 4671(1), 81–92. https://doi.org/10.11646/zootaxa.4671.1.6

Caseras, A., Metó, I., Fernández, F., & Baanante, I. v. (2000). Glucokinase gene expression is regulated in liver of gilthead sea bream (Sparus aurata). Biochimica et Biophysica Acta, 1493, 135–141. https://doi.org/10.1016/S0167-4781(00)00173-1

Castillo, A., Alvarez, A., Cuzon, G., Suárez, J., & Gaxiola, G. (2018). Glycemic response after glucose oral administration of wild juvenile red grouper Epinephelus morio fed two different diets. Fish Physiology and Biochemistry, 44(1), 219–226. https://doi.org/10.1007/s10695-017-0426-4

Castillo, A., Callejas, L., Álvarez-González, C. A., Maldonado, C., Cuzon, G., & Gaxiola-Cortés, M. G. (2018). Effect of native and modified starches on nutritional and physiological performance of wild juveniles of red grouper (Epinephelus morio). Ecosistemas y Recursos Agropecuarios, 5(15), 491–500. https://doi.org/10.19136/era.a5n15.1548

Concha-Frías, B., Álvarez-González, C. A., Gaxiola, G., Chiappa, X., Martínez-garcía, R., Camarillo-Coop, S., Peña, E. D. L., & Cruz-Alvarado, F. J. (2018). Dietary protein requirement in common snook (Centropomus undecimalis) juveniles reared in marine and brackish water. Ecosistemas y Recursos Agropecuarios, 5(13), 45–54. https://doi.org/10.19136/era.a5n13.1393

Cowey, C. B. (1995). Protein and amino acid requirements: A critique of methods. Journal of Applied Ichthyology, 11(3–4), 199–204.

Cowey, C. B., Cooke, D. J., Matty, A. J., & Adron, J. W. (1981). Effects of quantity and quality of dietary protein on certain enzyme activities in rainbow trout. The Journal of Nutrition, 111(2), 336–345. https://doi.org/10.1093/jn/111.2.336

Cowey, C. B., & Walton, M. J. (1988). Studies on the uptake of (14C) amino acids derived from both dietary (14C) protein and dietary (14C) amino acids by rainbow trout, Salmo gairdneri Richardson. Journal of Fish Biology, 33(2), 293–305.

Cui, X. J., Zhou, Q. C., Liang, H. O., Yang, J., & Zhao, L. M. (2010). Effects of dietary carbohydrate sources on the growth performance and hepatic carbohydrate metabolic enzyme activities of juvenile cobia (Rachycentron canadum Linnaeus.). Aquaculture Research, 42, 99–107. https://doi.org/10.1111/j.1365-2109.2010.02574.x

Cummings, N. J. (2004). The biology of yellowtail, Ocyurus chrysurus, with emphasis on populations in the Caribbean. Sustainable Fisheries Division Contribution (SFD), 196.

de La Morinière, E. C., Pollux, B. J. A., Nagelkerken, I., & van der Velde, G. (2002). Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuarine, Coastal and Shelf Science, 55(2), 309–321. https://doi.org/10.1006/ecss.2001.0907

Deng, D. F., Refstie, S., & Hung, S. S. O. (2001). Glycemic and glycosuric responses in white sturgeon (Acipenser transmontanus) after oral administration of simple and complex carbohydrates. Aquaculture, 199, 107–117.

Echazabal-Salazar, O., Morales-Bojórquez, E., & Arreguín-Sánchez, F. (2021). Biomass dynamic model for multiple data series: An improved approach for the management of the red grouper (Epinephelus morio) fishery of the Campeche Bank, Mexico. Regional Studies in Marine Science, 47, 101962. https://doi.org/10.1016/j.rsma.2021.101962

Enes, P., Panserat, S., Kaushik, S., & Oliva-Teles, A. (2006). Effect of normal and waxy maize starch on growth, food utilization and hepatic glucose metabolism in European sea bass (Dicentrarchus labrax) juveniles. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 143(1), 89–96. https://doi.org/10.1016/j.cbpa.2005.10.027

Enes, P., Panserat, S., Kaushik, S., & Oliva-Teles, A. (2008). Growth performance and metabolic utilization of diets with native and waxy maize starch by gilthead sea bream (Sparus aurata) juveniles. Aquaculture, 274, 101–108. https://doi.org/10.1016/j.aquaculture.2007.11.009

Enes, P., Panserat, S., Kaushik, S., & Oliva-Teles, A. (2009). Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiology and Biochemistry, 35(3), 519–539. https://doi.org/10.1007/s10695-008-9259-5

Enes, P., Peres, H., Almeida, I., Couto, A., & Oliva-Teles, A. (2011). Growth, feed utilization, and glycemic response in European sea bass, Dicentrarchus labrax, juveniles fed carbohydrate of different complexities. Journal of World Aquaculture Society, 42, 873–879. https://doi.org/10.1111/j.1749-7345.2011.00525.x

Enes, P., Sanchez-Gurmaches, J., Navarro, I., Gutiérrez, J., & Oliva-Teles, A. (2010). Role of insulin and IGF-I on the regulation of glucose metabolism in European sea bass (Dicentrarchus labrax) fed with different dietary carbohydrate levels. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 157(4), 346–353. https://doi.org/10.1016/j.cbpa.2010.08.006

Enriquez, R. M. L. (2018). Requerimiento de proteína de juveniles de pargo canané (Ocyurus chrysurus), utilizando harina de ave y pasta de canola como sustitutos parciales de la proteína de pescado. Tesis de maestría. Universidad Nacional Autónoma de México.

Fernández, I., Moyano, F. J., Díaz, M., & Martínez, T. (2001). Characterization of α-amylase activity in five species of Mediterranean sparid fishes (Sparidae, Teleostei). Journal of Experimental Marine Biology and Ecology, 262(1), 1–12. https://doi.org/10.1016/S0022-0981(01)00228-3

Furuichi, M., & Yone, Y. (1981). Change of blood Sugar and Plasma in Glucose Tolerance Insulin Levels Test*1. Bulletin of the Japanese Society of Scientific Fisheries, 47(6), 761–764.

Gilmore, R. G., Billock, L. H., & Berry, F. H. (1978). Hypotermal mortality in marine fishes of south-central Florida junuary, 1977. Northeast Gulf Sciance, 2(2), 77–97.

Giménez-Hurtado, E., Coyula-Pérez-Puelles, R., Lluch-Cota, S. E., González-Yañez, A. A., Moreno-García, V., & Burgos-De-La-Rosa, R. (2005). Historical biomass, fishing mortality, and recruitment trends of the Campeche Bank red grouper (Epinephelus morio). Fisheries Research, 71(3), 267–277. https://doi.org/10.1016/j.fishres.2004.09.001

Gracia-López, V., García-Galano, T., Gaxiola-Córtes, G., & Pacheco-Campos, J. (2003). Effect of dietary protein level and commercial feeds on growth and feeding of juvenile common snook, Centropomus undecimalis (Bloch, 1792). Ciencias Marinas, 29(4B), 585–594. https://doi.org/10.7773/cm.v29i42.198

Harpaz, S., & Uni, Z. (1999). Activity of intestinal mucosal brush border membrane enzymes in relation to the feeding habits of three aquaculture fish species. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 124(2), 155–160. https://doi.org/10.1016/S1095-6433(99)00106-3

Hidalgo, M. C., Urea, E., & Sanz, A. (1999). Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture, 170, 267–283. https://doi.org/10.1016/s0044-8486(98)00413-x

Hua, K., Cobcroft, J. M., Cole, A., Condon, K., Jerry, D. R., Mangott, A., Praeger, C., Vucko, M. J., Zeng, C., Zenger, K., & Strugnell, J. M. (2019). The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. In One Earth (Vol. 1, Issue 3, pp. 316–329). Cell Press. https://doi.org/10.1016/j.oneear.2019.10.018

Iynedjian, P. B. (2009). Molecular physiology of mammalian glucokinase. Cellular and Molecular Life Sciences, 66(1), 27–42. https://doi.org/10.1007/s00018-008-8322-9

Jia, S., Li, X., Zheng, S., & Wu, G. (2017). Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish. Amino Acids, 49(12), 2053–2063. https://doi.org/10.1007/s00726-017-2481-7

Jimenez-Martinez, L. D., Alvarez-González, C. A., Tovar-Ramírez, D., Gaxiola, G., Sanchez-Zamora, A., Moyano, F. J., Alarcón, F. J., Márquez-Couturier, G., Gisbert, E., Contreras-Sánchez, W. M., Perales-García, N., Arias-Rodríguez, L., Indy, J. R., Páramo-Delgadillo, S., & Palomino-Albarrán, I. G. (2012). Digestive enzyme activities during early ontogeny in common snook (Centropomus undecimalis). Fish Physiology and Biochemistry, 38(2), 441–454. https://doi.org/10.1007/s10695-011-9525-9

Kamalam, B. S., Medale, F., & Panserat, S. (2017). Utilisation of dietary carbohydrates in farmed fishes: New insights on influencing factors, biological limitations and future strategies. Aquaculture, 467, 3–27. https://doi.org/10.1016/j.aquaculture.2016.02.007

Krogdahl, A., Hemre, G. I., & Mommsen, T. P. (2005). Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquaculture Nutrition, 11, 103–122. https://doi.org/10.1111/j.1365-2095.2004.00327.x

Kuz’mina, V. v, Golovanova, I. L., & Izvekova, G. I. (1996). Influence of Temperature and Season On Some Characteristics of Intestinal Mucosa Carbohydrases in Six Freshwater Fishes. Biochem. Physiol, 113(2), 255–260.

Lee, S. M., Kim, K. D., & Lall, S. P. (2003). Utilization of glucose, maltose, dextrin and cellulose by juvenile flounder (Paralichthys olivaceus). Aquaculture, 221, 427–438. https://doi.org/10.1016/S0044-8486(03)00061-9

Lemus, I., Maldonado, C., Cuzon, G., Sanchez, A., Gaxiola, G., Alvarez, A., & Guerrero, M. (2018). In Vitro and In Vivo Feedstuff Digestibility for Snook, Centropomus undecimalis, Juveniles. Journal of the World Aquaculture Society, 49(1), 205–215. https://doi.org/10.1111/jwas.12429

Lin, S. M., Shi, C. M., Mu, M. M., Chen, Y. J., & Luo, L. (2018). Effect of high dietary starch levels on growth, hepatic glucose metabolism, oxidative status and immune response of juvenile largemouth bass, Micropterus salmoides. Fish and Shellfish Immunology, 78, 121–126. https://doi.org/10.1016/j.fsi.2018.04.046

Lindeman, K., Anderson, W., Carpenter, K. E., Claro, R., Cowan, J., Padovani-Ferreira, B., Rocha, L. A., Sedberry, G., & Zapp-Sluis, M. (2016). Ocyurus chrysurus, yellowtail snapper. In The IUCN Red List of Threatened Species.

Liu, H., Yang, J. J., Dong, X. H., Tan, B. P., Zhang, S., Chi, S. Y., Yang, Qi. H., Liu, H. Y., & Yang, Y. Z. (2020). Effects of different dietary carbohydrate-to-lipid ratios on growth, plasma biochemical indexes, digestive, and immune enzymes activities of sub-adult orange-spotted grouper Epinephelus coioides. Fish Physiology and Biochemistry. https://doi.org/10.1007/s10695-020-00799-4

Liu, X. he, Ye, C. xia, Ye, J. dan, Shen, B. duan, Wang, C. yan, & Wang, A. li. (2014). Effects of dietary amylose/amylopectin ratio on growth performance, feed utilization, digestive enzymes, and postprandial metabolic responses in juvenile obscure puffer Takifugu obscurus. Fish Physiology and Biochemistry, 40(5), 1423–1436. https://doi.org/10.1007/s10695-014-9937-4

Mayes, P. A., & Bender, D. A. (2003). The pentose phosphate pathway & other ptahways of hexose metabolism. In R. K. Murray, D. K. Granner, P. A. Mayes, & V. W. Rodwell (Eds.), Harper’s illustrated biochemistry (6th ed., p. 702). Lange Medical Books/McGraw-Hil.

McMichael, R. H., Peters, G. R., & Parsons, G. R. (1989). Early life history of the snook Centropomus, in Tampa Bay, Florida. Northeast Gulf Science, 10(2), 113–125.

Moe, M. (1969). Biology of the red grouper Epinephelus morio (Valenciennes) from the eastern Gulf of Mexico. https://www.researchgate.net/publication/34157325

Mommsen, T., & Plisetskaya, E., (1991). Insulin in fishes and agnathans: history, structure, and metabolic regulation. Reviews in Aquatic Science, 4, 225–259

Nagelkerken, I., & van der Velde, G. (2004). Are Caribbean mangroves important feeding grounds for juvenile reef fish from adjacent seagrass beds?. Marine Ecology Progress Series, 274, 143–151.

Navarro, I., Leibush, B., Moon, T. W., Plisetskaya, E. M., Baños, N., Méndez, E., Planas, J. v., & Gutiérrez, J. (1999). Insulin, insulin-like growth factor-I (IGF-I) and glucagon: The evolution of their receptors. Comparative Biochemistry and Physiology - Part B, 122(2), 137–153. https://doi.org/10.1016/S0305-0491(98)10163-3

Nelson, J. S. (2006). Fishes of the world (4th ed.). y John Wiley & Sons, Inc.

NRC. (2011). Nutrient Riqueriments of Fish and Shrimp. In The National Academies Press.

Oliva-Teles, A., Couto, A., Enes, P., & Peres, H. (2020). Dietary protein requirements of fish – a meta-analysis. Reviews in Aquaculture, 12(3), 1445–1477. https://doi.org/10.1111/raq.12391

Panserat, S., Capilla, E., Gutierrez, J., Frappart, P. O., Vachot, C., Plagnes-Juan, E., Aguirre, P., Brèque, J., & Kaushik, S. (2001). Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 128(2), 275–283. https://doi.org/10.1016/s1096-4959(00)00322-5

Panserat, S., Médale, F., Blin, C., Brèque, J., Vachot, C., Plagnes-Juan, E., Gomes, E., Krishnamoorthy, R., & Kaushik, S. (2000). Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilthead seabream, and common carp. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 278, R1164–R1170. https://doi.org/10.1152/ajpregu.2000.278.5.R1164

Panserat, S., Rideau, N., & Polakof, S. (2014). Nutritional regulation of glucokinase: a cross-species story. Nutrition Research Reviews, 27, 21–47. https://doi.org/10.1017/S0954422414000018

Panserat, S., Skiba-Cassy, S., Seiliez, I., Lansard, M., Plagnes-Juan, E., Vachot, C., Aguirre, P., Larroquet, L., Chavernac, G., Medale, F., Corraze, G., Kaushik, S., & Moon, T. W. (2009). Metformin improves postprandial glucose homeostasis in rainbow trout fed dietary carbohydrates: a link with the induction of hepatic lipogenic capacities?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 297(3), 707–715. https://doi.org/10.1152/ajpregu.00120.2009

Párrizas, M., Planas, J., Plisetskaya, E. M., & Gutiérrez, J. (1994). Insulin binding and receptor tyrosine kinase activity in skeletal muscle of carnivorous and omnivorous fish. American Journal of Physiology, 266, R1944 – R1950. https://doi.org/10.1152/ajpregu.1994.266.6.r1944

Peres, H., Gonc ̧alves, P., & Oliva-Teles, A. (1999). Glucose tolerance in gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax). Aquaculture, 179, 415–423. 10.1016/S0044-8486(99)00175-1

Peres, H., & Oliva-Teles, A. (2002). Utilization of raw and gelatinized starch by European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 205(3–4), 287–299.

Pérez-Jiménez, A., Abellán, E., Arizcun, M., Cardenete, G., Morales, A. E., & Hidalgo, M. C. (2015). Nutritional and metabolic responses in common dentex (Dentex dentex) fed on different types and levels of carbohydrates. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 184, 56–64. https://doi.org/10.1016/j.cbpa.2015.02.002

Perez-Pinzón, M. A., & Lutz, P. L. (1991). Activity related cost of osmoregulation in the juvenile snook (Centropomus undecimalis). Bulletin of Marine Science, 48(1), 58–66.

Polakof, S., Panserat, S., Soengas, J. L., & Moon, T. W. (2012). Glucose metabolism in fish: A review. Journal of Comparative Physiology B, 182, 1015–1045. https://doi.org/10.1007/s00360-012-0658-7

Ren, M., Habte-Tsion, H. M., Xie, J., Liu, B., Zhou, Q., Ge, X., Pan, L., & Chen, R. (2015). Effects of dietary carbohydrate source on growth performance, diet digestibility and liver glucose enzyme activity in blunt snout bream, Megalobrama amblycephala. Aquaculture, 438, 75–81. https://doi.org/10.1016/j.aquaculture.2015.01.008

Rivas, L. R. (1986). Systematic review of the perciform fishes of the genus Centropomus. Copeia, 3, 579–611. https://doi.org/10.2307/1444940

SAGARPA. (2007). Modificación a la norma oficial mexicana NOM-017-PESC-1994, para regular las actividades de pesca deportivo-recreativa en las aguas de jurisdicción federal de los Estados Unidos Mexicanos, publicada el 9 de mayo de 1995. Diario Oficial de La Federación, 1, 59–101.

SAGARPA. (2017). Carta Nacional Pesquera. Diario Oficial de La Federación.

Silva, A. F. D. (2017). Requerimiento de proteína y energía: Efecto en el banace bioenergético en juveniles silvestres del mero rojo Epinephelus morio (Valenciennes 1828). Tesis de maestría. Universidad Nacional Autónoma de México.

Silva, A. F., Escalante, K., Alvarez-González, A., Guerrero-Olazarán, M., Cuzon, G., & Gaxiola, G. (2014). Testing protein digestibility in red grouper Epinephelus morio using in vitro and in vivo methods. The Israeli Journal of Aquaculture-Bamidgeh, 1–10. http://www.siamb.org.il.

Silvão, C. F., & Nunes, A. J. P. (2017). Effect of dietary amino acid composition from proteins alternative to fishmeal on the growth of juveniles of the common snook, Centropomus undecimalis. Revista Brasileira de Zootecnia, 46(7), 569–575. https://doi.org/10.1590/S1806-92902017000700003

Stone, D. A. J. (2003). Dietary carbohydrate utilization by fish. Reviews in Fisheries Science, 11(4), 337–369. https://doi.org/10.1016/0044-8486(94)90363-8

Taylor, R. G., Grier, H. J., & Whittington, J. A. (1998). Spawning rhythms of common snook in Florida. Journal of Fish Biology, 53, 502–520.

Tucker, JR. J. W. (1987). Snook and tarpon snook culture and preliminary evaluation for commercial farming. The Progressive Fish-Culturist, 49, 49–57. https://doi.org/10.1577/1548-8640(1987)49<49:SATSCA>2.0.CO;2

Van Waarde, A. (1983). Revie aerobic and amaerobic ammonia production by fish. Comparative Biochemical and Physiology, 74(4), 675–684.

Verweij, M. C., Nagelkerken, I., Hans, I., Ruseler, S. M., & Mason, P. R. D. (2008). Seagrass nurseries contribute to coral reef fish populations. Limnology and Oceanography, 53(4), 1540–1547.

Walton, M. J., & Cowey, C. B. (1982). Aspect of intermediary metabolism in salmonid fish. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 73B(1), 59–79. https://doi.org/10.1016/0016-6480(75)90235-X

West, T. G., Arthur, P. G., Suarez, R. K., Doll, C. J., & Hochachka, P. W. (1993). In vivo utilization of glucose by heart and locomotory muscles of exercising rainbow trout (Oncorhynchus mykiss). Journal of Experimental Biology, 177(1), 63–79.

Wilson, R. P. (1994). Utilization of dietary carbohydrate by fish. Aquaculture, 124(1–4), 67–80. https://doi.org/10.1016/0044-8486(94)90363-8

Zhou, C., Ge, X., Niu, J., Lin, H., Huang, Z., & Tan, X. (2015). Effect of dietary carbohydrate levels on growth performance, body composition, intestinal and hepatic enzyme activities, and growth hormone gene expression of juvenile golden pompano, Trachinotus ovatus. In Aquaculture (Vol. 437). Elsevier B.V. https://doi.org/10.1016/j.aquaculture.2014.12.016

Descargas

Publicado

2022-10-12

Cómo citar

Arenas, M., Barreto, A., & Gaxiola Cortés , M. G. (2022). Habilidad de tres especies de peces tropicales de hábitos carnívoros para utilizar carbohidratos: Robalo blanco (Centropomus undecimalis), Mero rojo (Epinephelus morio) y Pargo canané (Ocyurus chrysurus). Avances En Nutrición Acuicola, 1(1), 263–283. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/371