Evaluation of a Beta-propeller Phytase for its Application in Aquaculture

Authors

  • Martha Guerrero-Olazarán Universidad Autónoma de Nuevo León
  • L. Elizabeth Cruz-Suárez Universidad Autónoma de Nuevo León
  • Denis Ricque-Marie Universidad Autónoma de Nuevo León
  • Martha Nieto-López Universidad Autónoma de Nuevo León
  • Mireya Tapia-Salazar Universidad Autónoma de Nuevo León
  • Eddy L. Cab-Barrera Universidad Autónoma de Nuevo León
  • José M. Viader-Salvadó Universidad Autónoma de Nuevo León

Keywords:

Phytase, Soybean meal, Pea protein

Abstract

The beta-propeller phytases are structurally different from the commercially available phytases, possess high thermal stability, an optimal temperature of 55 to 70°C, unique Ca2+-dependent catalytic properties, a pH optimum close to 7, and exhibit activity within a range of pHs that is broader than those of the histidine acid phytases. In this work, the performance of FTEII, a new beta-propeller phytase, was compared with those of three commercial phytases in terms of thermostability at 99°C, resistance to proteolysis by digestive enzymes, and their effectiveness for phosphorus (P) release from two feed ingredients.
FTEII showed the highest thermostability with residual activity of 82±3 after 1.5 min treatment at 90°C. All phytases were resistant to shrimp digestive enzymes and to porcine trypsin, residual activities showed values higher than 60% in all cases. Total phosphorus released from each phytase-treated ingredient was time, temperature and type of ingredient dependent. FTEII treatments showed the higher levels of phosphorus release in both, soybean meal (68%) and pea (57%) at 50°C. Endogenous hydrolytic activity of both ingredients promoted a phosphorus release, up to 28% or 17% of total phosphorus in soybean meal or in pea protein concentrate, respectively. Unlike commercial phytases, FTEII is phytate specific; therefore it is possible to assume that most of the phosphorus released came only from phytate. FTEII offer an alternative as phytase additive for pelleted feeds and for releasing phosphorus under conditions suitable for digestive tracts of species grown in aquaculture.

Downloads

Download data is not yet available.

References

Beleia A, Thu Thao LT, Ida El. 1993. Lowering phytic phosphorus by hydration of soybean. J Food Sci 58:375-388.

Biswas P, Pal AK, Sahu NP, Reddy AK, Prusty AK and Misra S.2007. Lysine and/or phytase supplementation in the diet of Penaeus monodon (Fabricius) juveniles: Effect on growth, body composition and lipid profile. Aquaculture 265 (2007) 253–260.

Carnovale E, Lugaro E, Lomabardi-Boccia G. 1988. Phytic acid in faba bean and pea: effect on protein availability. Cereal Chem 65:114-117.

Denstadli V, Hillestad M, Verlhac V, Klausen M, Øverland M. 2011. Enzyme pretreatment of fibrous ingredients for carnivorous fish: Effects on nutrient utilisation and technical feed quality in rainbow trout (Oncurhynchus mykiss). Aquaculture 319:391-397.

Fortes-Silva R, Sánchez-Vázquez FJ, Martínez FJ. 2011. Effects of pretreating a plant-based diet with phytase on diet selection and nutrient utilization in European sea bass. Aquaculture 319:417-422.

Frias J, Doblado R, Antezana JR, Vidal-Valverde C. 2003. Inositol phosphate degradation by the action of phytase enzyme in legume seeds. Food Chem 81:233-239.

Greiner R. and Konietzny U. 2006. Phytase for food application. Food Technol. Biotechnol. 44:125–140

Guerrero-Olazarán M, Rodríguez-Blanco L, Carreón-Treviño JG, Gallegos-López JA, Viader-Salvadó JM. 2010. Expression of a Bacillus phytase C gene in Pichia pastoris and properties of the recombinant enzyme. Appl Environ Microbiol.76:5601-5608.

Ha NC, Oh BC, Shin S, Kim HJ, Oh TK, Kim YO, Choi KY, Oh BH. 2000. Crystal structures of a novel thermostable phytase in partially and fully calcium-loaded states. Nat Struct Biol.7:147-153.

Kerovuo J, Lappalainen I and Reinikainen T. 2000. The metal dependence of Bacillus subtilis phytase. Biochem. Biophys. Res. Commun. 268: 365–369

Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J. 1998. Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol. 64: 2079–2085.

Kim YO, Kim HK, Bae KS, Yu JH, Oh TK. 1998. Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme Microb Technol.22:2-7.

Kim, DH, B. Oh BC, Choi WC, Lee JK and Oh TK. 1999. Enzymatic evaluation of Bacillus amyloliquefaciens phytase as a feed additive. Biotechnol. Lett. 20:925–927.

Lei XG, Porres JM, Mullaney EJ, Brinch-Pedersen H. 2007. Phytase: source, structure and application. In: Polaina J, MacCabe AP, editors. Industrial enzymes: structure, function and applications. Dordrecht: Springer;:505-529.

Lei XG, Weaver JD, Mullaney EJ, Ullah AH, and Azain MJ. 2013. Phytase, a new life for an “old” enzyme. Annu Rev Anim Biosci. 1:283-309.

Mullaney EJ, Ullah AHJ. 2007. Phytases: attributes, catalytic mechanisms, and applications. In: Turner L, Richardson AE, Mullaney EJ, editors. Inositol phosphates: linking agriculture and the environment. Oxfordshire: CAB International;:97-110.

Nwanna LC, Eisenreich R, Schwarz FJ. 2007. Effect of wet-incubation of dietary plant feedstuffs with phytases on growth and mineral digestibility by common carp (Cyprinus carpio L). Aquaculture 271(1):461-468.

Oh BC, Choi WC, Park S, Kim Yo, Oh TK. 2004. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl. Microbiol. Biotechnol. 63: 362–372.

Pointillart A. 1993. Proc 1st Symposium on Enzymes in Animal Nutrition. Eds. C. Wenk y M. Boessinger, Kartause Ittingen, Switzerland pp: 192-199.

Rodriguez E, Porres JM, Han Y, Lei XG. 1999. Different sensitivity of recombinant Aspergillus niger phytase (r-phyA) and Escherichia coli pH 2.5 acid phosphatase (r-AppA) to trypsin and pepsin in vitro. Arch. Biochem. Biophys. 365(2): 262-267.

Rodriguez, E., Z. A. Wood, P. A. Karplus, and X. G. Lei. 2000. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch. Biochem. Biophys. 382:105–112.

Selle PH and Ravindran V. 2007. Microbial phytase in poultry nutrition. Anim. Feed Sci. Technol. 135:1–41

Shin S, Ha NC, Oh BC, Oh TK, Oh BH. 2001. Enzyme mechanism and catalytic property of beta propeller phytase. Structure.9:851-858.

Urbano G, Aranda P, Gomez-Villalva E, Frejnagel S, Porres J, Frias J, Vidal-Valverde C and Lopez-Jurado M. 2003. Nutritional Evaluation of Pea (Pisum sativum L.) Protein diets after mild hydrothermal treatment and with and without addded phytase . J. Agric. Food Chem. 2003, 51, 2415-2420.

Vandenberg GW, Scott SL, Sarker PK, Dallaire V, de la Noüe J. 2011. Encapsulation of microbial phytase: Effects on phosphorus bioavailability in rainbow trout (Oncorhynchus mykiss). Anim Feed Sci Technol 169:230-243.

Vats P, Bhushan B, Banerjee UC. 2009. Studies on the dephosphorylation of phytic acid in livestock feed using phytase from Aspergillus niger van Teighem. Bioresource Technology 100: 287–291

Viader-Salvadó JM, Castillo-Galván M, Fuentes-Garibay JA, Iracheta-Cárdenas MM, Guerrero-Olazarán M. 2013. Optimization of five environmental factors to increase beta-propeller phytase production in Pichia pastoris and impact on the physiological response of the host. Biotechnol Prog. doi: 10.1002/btpr.1822.

Viader-Salvadó JM, Gallegos-López JA, Carreón-Treviño JG, Castillo-Galván M, Rojo-Domínguez A, Guerrero-Olazarán M. 2010. Design of thermostable beta-propeller phytases with activity over a broad range of pHs and their overproduction by Pichia pastoris. Appl Environ Microbiol.;76:6423-6430.

Vielma J, Ruohonen K, Peisker M. 2002. Dephytinization of two soy protein increases phosphorus and protein utilization by rainbow trout, Oncorhynchus mykiss. Aquaculture. 204: 145-456.

Wang F, Yang YH, Han ZZ, Dong HW, Yang CH, Zou ZY. 2009. Effects of phytase pretreatment of soybean meal and phytase-sprayed in diets on growth, apparent digestibility coefficient and nutrient excretion of rainbow trout (Oncorhynchus mykiss Walbaum). Aquac Int 17:143-157.

Downloads

Published

2013-11-30

How to Cite

Guerrero-Olazarán, M., Cruz-Suárez, L. E., Ricque-Marie, D., Nieto-López, M., Tapia-Salazar, M., Cab-Barrera, E. L., & Viader-Salvadó, J. M. (2013). Evaluation of a Beta-propeller Phytase for its Application in Aquaculture. Avances En Nutrición Acuicola. Retrieved from https://nutricionacuicola.uanl.mx/index.php/acu/article/view/79

Most read articles by the same author(s)

<< < 1 2 3 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.