La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo Intensivo

Authors

  • Miguel A. Olvera-Novoa Centro de Investigación y de Estudios Avanzados del IPN
  • Gloria Martínez-Milián Centro de Investigación y de Estudios Avanzados del IPN
  • Itzel A. Sánchez-Tapia Centro de Investigación y de Estudios Avanzados del IPN

Keywords:

Holoturidos, Acuacultura, Algas, Detritus

Abstract

La elevada demanda de pepino de mar en el sureste asiático y particularmente en china, ha generado una
sobreexplotación de existencias silvestres a escala mundial, provocando el agotamiento de pesquerías y
desaparición de poblaciones, por lo que su cultivo se aprecia como una alternativa para satisfacer la demanda.
Su cultivo se inició a mediados del siglo XX en China, donde actualmente la oferta local proviene
exclusivamente de cultivos extensivos y semiintensivos en estanques costeros, encierros en el mar, así como
“sea ranching”. El cultivo intensivo está poco desarrollado, atribuido a la carencia de alimentos apropiados
para las diferentes etapas de desarrollo del organismo, asociados al bajo conocimiento de requerimientos
nutricionales e información para su formulación. Este organismo es bentófago detritívoro, consumiendo
materia orgánica en degradación con restos animales y vegetales acompañados de microorganismos
epibentónicos. Sus requerimientos proteicos y lipídicos rondan en 20 y 2-3% de la dieta, respectivamente.
Existe información sobre sus necesidades de vitaminas C y E, así como de uso ingredientes, que indica que
sus dietas se pueden formular a base de harinas de soya, macroalgas y subproductos agroindustriales. Se
detectan necesidades de información necesaria para la elaboración de dietas apropiadas para su cultivo
intensivo.

Downloads

Download data is not yet available.

References

Agudo N. (2006) Sandfish Hatchery Techniques. Australian Centre for International Agricultural Research

(ACIAR), the Secretariat of the Pacific Community (SPC) and the WorldFish Center. Australia.

Ahearn, G.A. (1968). A comparative study of P32 uptake by whole animals and isolated body regions of the

sea cucumber Holothuria atra. The Biological Bulletin 134, 367-381.

Al Rashdi K. A., Eeckhaut I. & Claereboudt M. R. (2012) A manual on hatchery of sea cucumber Holothuria

scabra in the Sultanate of Oman. Ministry of Agriculture and Fisheries Wealth Directorate General of

Fisheries Research Aquaculture Centre, Muscat, Sultanate of Oman. 27 pp.

Asha P. S. & Muthiah P. (2002) Spawning and larval rearing of sea cucumber Holothuria (Theelothuria)

Spinifera Theel. SPC Beche-de-mer Information Bulletin 16, 11-15.

Asha P. S. & Muthiah P. (2006) Effects of single and combined microalgae on larval growth, development

and survival of the commercial sea cucumber Holothuria spinifera Theel. Aquaculture Research 37,

-118.

Asha P. S. (2004) Effect of feed concentrations on larval growth, survival and development of Holothuria

(Theelothuria) spinifera Theel. Journal of the Marine Biological Association of India 46(1), 80-86.

Bai Y., Zhang L., Xia S., Liu S., Ru X., Xu Q., Zhang T. & Yang H. (2016) Effects of dietary protein levels

on the growth, energy budget, and physiological and immunological performance of green, white and

purple color morphs of sea cucumber, Apostichopus japonicus. Aquaculture 450, 375–382.

Battaglene S. C. (1999) Culture of tropical sea cucumbers for stock restoration and enhancement. The

ICLARM Quarterly 22(4), 4-11.

Battaglene S.B. & Seymour J.E. (1998) Detachment and grading of the tropical sea cucumber sandfish,

Holothuria scabra, juveniles from settlement substrates. Aquaculture 159, 263-274.

Battaglene S.C., Seymour J.E. & Ramofafia C. (1999). Survival and growth of cultured juvenile sea

cucumbers, Holothuria scabra. Aquaculture 178, 293-322.

Brothers, C.J., Lee, R.W. & Nestler, J.R. (2015). The uptake of dissolved organic material by the sea

cucumber Parastichopus californicus (Stimpson) and its potential role in visceral regeneration. Journal

of Experimental Marine Biology and Ecology 469, 69-75.

Cameron J.L. & Fankboner P. V. (1989). Reproductive biology of the commercial sea cucumber

Parastichopus californicus (Stimpson) (Echinodermata: Holothuroidea). II. Observations on the ecology

of development, recruitment, and the juvenile life stage. Journal of Experimental Marine Biology and

Ecology 127(1), 43-67.

Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo

Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,

M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.

Chen C. P., Hsu H. W. & Deng D. C. (1991) Comparison of larval development and growth of the sea

cucumber Actinopyga echinites: ovary-induced ova and DTT-induced ova. Marine Biology 109, 453-

Chen C.P., Hsu H.W. & Deng D.C. (1991) Comparison of larval development and growth of the sea

cucumber Actinopyga echinites: ovary-induced ova and DTT-induced ova. Marine Biology 109, 453-

Chen J. (2003) Overview of sea cucumber farming and sea ranching practices in China. SPC Beche-de-mer

Information Bulletin 18, 18-23.

Chia F. S. (1977) Perspectives: settlement and metamorphosis of marine invertebrate larvae. In: Settlement

and Metamorphosis of Marine Invertebrate Larvae (ed. by F. S. Chia & M. E. Rice), pp. 283-285.

Elsevier.

Chopin T., Cooper J.A., Reid G., Cross S. & Moore C. (2012) Open-water integrated multi-trophic

aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive

aquaculture. Reviews in Aquaculture 4(4), 209-220.

Conapesca (2017) Base de Datos de Producción, Anuario 2005 a 2014. [online] Disponible en:

http://www.gob.mx/conapesca/documentos/anuario-estadistico-de-acuacultura-y-pesca [Accesado 5

May 2017].

Dabbagh A.-R., Sedaghat M. R., Rameshi H. & Kamrani, E. (2011) Breeding and larval rearing of the sea

cucumber Holothuria leucospilota Brandt (Holothuria vegabunda Selenka) from the northern Persial

Gulf, Iran. SPC Beche-de-mer Information Bulletin 31, 35-38.

Duy N. D. Q., Francis D. S. & Southgate P. C. (2017) The nutritional value of live and concentrated microalgae

for early juveniles of sandfish, Holothuria scabra. Aquaculture 473, 97-104.

Duy N.D.Q., Francis D.S., Pirozzi I. & Southgate P.C. (2016) Use of micro-algae concentrates for hatchery

culture of sandfish, Holothuria scabra. Aquaculture 464, 145-152.

Fabinyi M. & Liu N. (2014) Seafood banquets in Beijing: consumer perspectives and implications for

environmental sustainability. Conservation and Society 12(2), 218–228.

FAO (2017) Stichopus japonicus (Selenka, 1867). [online] FAO, Fisheries and Aquaculture Resoures.

Disponible en: http://www.fao.org/fishery/culturedspecies/Stichopus_japonicus/en/ [Accesed 8 May

.

Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo

Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,

M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.

Fontaine, A. & Chia, F. (1968). Echinoderms: an autoradiographic study of assimilation of dissolved organic

molecules. Science 161, 1153-1155.

Gao Q. F., Wang Y., Dong S., Sun Z. & Wang F. (2011) Absorption of different food sources by sea

cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea): Evidence from carbon

stable isotope. Aquaculture 319(1–2), 272–276.

Giraspy D.A.B. & Ivy G. (2008) The influence of commercial diets on growth and survival in the

commercially important sea cucumber Holothuria scabra var. versicolor (Conand, 1986)

(Echinodermata: Holothuroidea). Beche-de-Mer Information Bulletin 28(28), 46–52.

Granada L., Sousa N., Lopes S. & Lemos M.F.L. (2016) Is integrated multitrophic aquaculture the solution to

the sectors’ major challenges? – a review. Reviews in Aquaculture 8, 283-300.

Guisado C., Carrasco S.A., Díaz-Guisado D., Maltrain R. & Rojas H. (2012) Embryonic development, larval

morphology and juvenile growth of the sea cucumber Athyonidium chilensis (Holothuroidea:

Dendrochirotida). Revista de Biología Marina y Oceanografía 47, 65-73.

Guzmán H.M., Guevara C.A. & Hernández L.C. (2003) Reproductive cycle of two commercial species of sea

cucumber (Echinodermata: Holothuroidea) from Caribbean Panama. Marine Biology 142, 271-279.

Hamel J.-F., Conand C., Pawson D.L. & Mercier A. (2001) The sea cucumber Holothuria scabra

(Holothuroidea: Echinodermata): Its biology and exploitation as beche-de-mer. Advances in Marine

Biology 41, 129-223.

Hamel J.-F., Hidalgo R.Y. & Mercier A. (2003) Larval development and juvenile growth of the Galapagos

sea cucumber Isostichopus fuscus. SPC Beche-de-mer Information Bulletin 18, 3-8.

Han Q., Keesing J. & Liu D. (2016) A review of sea cucumber aquaculture, ranching, and stock enhancement

in China. Reviews in Fisheries Science & Aquaculture 24(4), 326-341.

Hart M.E. & Strathmann R.R. (1995) Mechanisms and rates of suspension feeding. In; Ecology of Marine

Invertebrate Larvae (ed. by L. McEdward), pp. 193-221. CRC Press.

Hu C., Xu Y., Wen J., Zhang L., Fan S. & Su T. (2010) Larval development and juvenile growth of the sea

cucumber Stichopus sp. (Curry fish). Aquaculture 300, 73-79.

INAPESCA (2012) Carta Nacional Pesquera – Actualización. Diario Oficial de la Federación, 2ª Sección,

agosto 24, 2012.

Ito S. & Kitamura H. (1997) Induction of larval metamorphosis in the sea cucumber Stichopus japonicus by

periphytic diatoms. Hydrobiologia 358, 281-284.

Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo

Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,

M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.

Ito S. & Kitamura H. (1998) Technical development in seed production of the Japanese sea cucumber,

Stichopus japonicus. SPC Beche-de-mer Information Bulletin 10, 24-28.

IUCN (2017-1) The IUCN Red List of Threatened Species. [online] Disponible en:

http://www.iucnredlist.org/details/180373/0 [Accesed 5 May 2015].

Ivy G. & Giraspy D.A.B. (2006) Development of large-scale hatchery production techniques for the

commercially important sea cucumber Holothuria scabra var. versicolor (Conand, 1986) in Queensland,

Australia. SPC Beche-de-mer Information Bulletin 24, 28-34.

Jaeckle, W.B., Strathmann, R.R. (2013). The anus as a second mouth: anal suspension feeding by an oral

deposit-feeding sea cucumber. Invertebrate Biology 132, 62-68.

James D.B. (2004) Captive breeding of the sea cucumber, Holothuria scabra, from India. In: Advances in Sea

Cucumber Aquaculture and Management, (ed. by A. Lovatelli, C. Conand, S. Purcell, S. Uthicke, J.-F.

Hamel & A. Mercier), pp. 385-395. Food and Agriculture Organization of the United Nations.

James D.B., Gandhi A.D., Palaniswamy N. & Rodrigo J.S. (1994) Hatchery techniques and culture of the seacucumber

Holothuria scabra. Central Marine Fisheries Research Institute. India.

James D.B., Rajapandian M.E., Gopinathan C.P. & Baskar B.K. (1994) Breakthrough in induced breeding

and rearing of the larvae and juveniles of Holothuria (Metriatyla) scabra Jaeger at Tuticorin. Bulletin of

The Central Marine Fisheries Research Institute 46, 66-70.

Jobling M. (2016) Fish nutrition research: past, present and future. Aquaculture International 24(3), 767-786.

Jones, I.D. (1975). Effect of processing by fermentation of nutrients. In: R.S. Harris & E. Karmas (eds),

Nutritional Evaluation of Food Processing, p. 324. Avi Publishing Co. Inc, Westport, Connecticut.

Knauer J. (2011) Growth and survival of larval sandfish, Holothuria scabra (Echinodermata: Holothuroidea),

fed different microalgae. Journal of the World Aquaculture Society 42, 880-887.

Ko S.H., Go S., Okorie O.E., Kim Y.C., Lee S., Yoo G.Y. & Bai S.C. (2009) Preliminary study of the dietary

a-tocopherol requirement in sea cucumber, Apostichopus japonicus. Journal of the World Aquaculture

Society 40(5), 659–666.

Kumara P.A.D.A., Jayanatha J.S., Pushpakumara J., Bandara W. & Dissanayake D.C.T. (2013) Artificial

breeding and larval rearing of three tropical sea cucumber species - Holothuria scabra,

Pseudocolochirus violaceus and Colochirus quadrangularis – in Sri Lanka. SPC Beche-de-mer

Information Bulletin 33, 30-37.

Lacalli T.C. & West J.E. (2000) The auricularia-to-doliolaria transformation in two aspidochirote

holothurians, Holothuria Mexicana and Stichopus californicus. Invertebrate Biology 119(4), 421-432.

Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo

Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,

M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.

Laxminarayana A. (2005) Induced spawning and larval rearing of the sea cucumbers, Bohadschia marmorata

and Holothuria atra in Mauritius. SPC Beche-de-mer Information Bulletin 22, 48-52.

Levin L.A. & Bridges T.S. (1995) Pattern and diversity in reproduction and development. In: Ecology of

Marine Invertebrate Larvae (ed. by L. McEdward), pp. 1-48. CRC Press.

Li L., Li Q. & Kong L. (2010) The effect of different substrates on larvae settlement in sea cucumber,

Apostichopus japonicus Selenka. Journal of the World Aquaculture Society 41, 123-130.

Liao M., Ren T., Chen W., Jiang Z., Yang H., & Han Y. (2015) Optimum level of dietary n-3 highly

unsaturated fatty acids for juvenile sea cucumber, Apostichopus japonicus. Journal of the World

Aquaculture Society 46(6), 642–649.

Liao M., Ren T., He L., Jiang Z. & Han Y. (2014) Optimum dietary protein level for growth and coelomic

fluid non-specific immune enzymes of sea cucumber Apostichopus japonicus juvenile. Aquaculture

Nutrition 20, 443–450.

Liao M.-L., Ren T.-J., Chen W., Han Y.-Z., Liu C.-M., Jiang Z.-Q. & Wang F.-Q. (2017) Effects of dietary

lipid level on growth performance, body composition and digestive enzymes activity of juvenile sea

cucumber, Apostichopus japonicus. Aquaculture Research 48, 92–101.

Liu, Y., Dong, S., Tian, X., Wang, F., Gao, Q. (2009). Effects of dietary sea mud and yellow soil on growth

and energy budget of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture 286, 266-270.

Liu G., Sun, J. & Liu S. (2015) From fisheries toward aquaculture. In: The Sea Cucumber Apostichopus

japonicus: History, Biology and Aquaculture (ed. by H. Yang, J.-F. Hamel & A. Mercier), pp. 25-35.

Academic Press, London

Liu G., Yang H. & Liu S. (2010) Effects of rearing temperature and density on growth, survival and

development of sea cucumber larvae, Apostichpus japonicus (Selenka). Chinese Journal of Oceanology

and Limnology 28(4), 842-848.

Liu Y., Dong S., Tian X., Wang F. & Gao Q. (2010a) The effect of different macroalgae on the growth of sea

cucumbers (Apostichopus japonicus Selenka). Aquaculture Research. 41(11), e881–e885.

Manahan D. T. (1990) Adaptations by invertebrate larvae for nutrient acquisition from seawater. American

Zoologist 30, 147-160.

Martínez-Milián G. & Olvera-Novoa M.A. (2016) Evaluation of potential feed ingredients for the juvenile

four-sided sea cucumber, Isostichopus badionotus. Journal of the World Aquaculture Society 47(5),

–719.

Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo

Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,

M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.

Matsuura H., Yazaki I. & Okino T. (2009) Induction of larval metamorphosis in the sea cucumber

Apostichopus japonicus by neurotransmitters. Chemistry and Biochemistry 75, 777-783.

Mazlan N. & Hashim R. (2015) Spawning induction and larval rearing of the sea cucumber Holothuria

scabra in Malaysia. SPC Beche-de-mer Information Bulletin 35, 32-36.

Mercier A. & Hamel J.-F. (2013) Sea cucumber aquaculture: hatchery production, juvenile growth and

industry challenges. In: Advances in Aquaculture Hatchery Technology. (ed. by G. Allan & G. Burnell),

pp. 431-454. Woodhead Publishing Ltd, Cambridge.

Mercier A., Battaglene S. C. & Hamel J.-F. (2000) Settlement preferences and early migration of the tropical

sea cucumber Holothuria scabra. Journal of Experimental Marine Biology and Ecology 249, 89-110.

Mercier A., Ycaza H. R. & Hamel J.-F. (2004) Aquaculture of the Galapagos sea cucumber, Isostichopus

fuscus. In: Advances in Sea Cucumber Aquaculture and Management. (ed. by A. Lovatelli, C. Conand,

S. Purcell, S. Uthicke, J.-F. Hamel & A. Mercier), pp. 347-357. Food and Agriculture Organization of

the United Nations, Rome.

Morgan A.D. (2001) The effect of food availability on early growth development and survival of the sea

cucumber Holothuria scabra. SPC Beche-de-mer Information Bulletin 14, 6-12.

Morgan A.D. (2002) Hatchery research sheds light on problems in sea cucumber aquaculture. SPC Beche-demer

Information Bulletin 17, 36-37.

Morgan A.D. (2008) The effect of food availability on phenotypic plasticity in larvae of the temperate sea

cucumber Australostichopus mollis. Journal of Experimental Marine Biology and Ecology 363, 89-95.

Morgan A.D. (2009) assessment of egg and larval quality during hatchery production of the temperate sea

cucumber, Australostichpous mollis (Levin). Journal of the World Aquaculture Society 40(5), 629-62.

Okorie O.E., Ko S.H., Go S., Lee S., Bae J.Y., Han K. & Bai S.C. (2008) Preliminary study of the optimum

dietary ascorbic acid level in sea cucumber, Apostichopus japonicus (Selenka). Journal of the World

Aquaculture Society 39(6), 758–765.

Orozco-Almeda Z.G., Sumbing J.G., Lebata-Ramos M.J.H., Watanabe S. (2014) Apparent digestibility

coefficient of nutrients from shrimp, mussel, diatom and seaweed by juvenile Holothuria scabra Jaeger.

Aquaculture Research 45, 1153-1163.

Paltzat D.L., Pearce C.M., Barnes P.A. & McKinley R.S. (2008) Growth and production of California sea

cucumbers (Parastichopus californicus Stimpson) co-cultured with suspended Pacific oysters

(Crassostrea gigas Thunberg). Aquaculture 275(1–4), 124–137.

Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo

Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,

M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.

Pitt R. & Duy N.D.Q. (2004) Breeding and rearing of the sea cucumber Holothuria scabra in Viet Nam. In:

Advances in Sea Cucumber Aquaculture and Management. (ed. by A. Lovatelli, C. Conand, S. Purcell,

S. Uthicke, J.-F. Hamel & A. Mercier), pp. 333-346. Food and Agriculture Organization of the United

Nations, Rome.

Pitt R. (2001) Review of sandfish breeding and rearing methods. SPC Beche-de-mer Information Bulletin 14,

-21.

Poot-Salazar A., Hernández-Flores A. & Ardisson P.-L. (2015) Indicadores de sostenibilidad para la

evaluación de las pesquerías de pepino de mar en la península de Yucatán, México. Ciencia Pesquera

(2), 11-24.

Purcell S. W., Ngaluafe P., Foale S.J., Cocks N., Cullis B. R. & Lalavanua W. (2016) Multiple factors affect

socioeconomics and wellbeing of artisanal sea cucumber fishers. PLoS ONE 11(12), 1–20.

Purcell S.W., Hair C.A. & Mills D.J. (2012) Sea cucumber culture, farming and sea ranching in the tropics:

Progress, problems and opportunities. Aquaculture 368-369, 68-81.

Purcell S.W., Polidoro B.A., Hamel J.-F., Gamboa R.U. & Mercier A. (2014) The cost of being valuable:

predictors of extinction risk in marine invertebrates exploited as luxury seafood. Proceedings of the

Royal Society B 281, 1–9.

Qi Z., Wang J., Mao Y., Liu H. & Fang J. (2013) Feasibility of offshore co-culture of abalone, Haliotis discus

hannai Ino, and sea cucumber, Apostichopus japonicus, in a temperate zone. Journal of the World

Aquaculture Society 44(4), 565–573.

Qiu T., Zhang T., Hamel J.-F. & Mercier A. (2015) Development, settlement, and post-settlement growth. En:

The Sea Cucumber Apostichopus japonicus: History, Biology and Aquaculture. (Ed. by H. Yang, J.-F.

Hamel & A. Mercier), pp. 111-132. Elsevier.

Ramofafia C., Byrne M. & Battaglene S. C. (2003) Development of three commercial sea cucumber

Holothuria scabra, H. fuscogilva and Actinopyga mauritiana: Larval structure and growth. Marine and

Freshwater Research 54(5), 657-667.

Ramofafia C., Foyle T. P. & Bell J.D. (1997) Growth of juvenile Actinopyga mauritiana (Holothuroidea) in

captivity. Aquaculture 152(1–4), 119–128.

Ramofafia C., Gervis M. & Bell J. (1995) Spawning and early larval rearing of Holothuria atra. SPC Bechede-

mer Information Bulletin 7, 3-6.

Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo

Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,

M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.

Ren T. J., Liao M.L., Han Y.Z., Li Y.L., Jiang Z.Q. & Wang F.Q. (2016) Effectiveness of l-ascorbyl-2-

polyphosphate as an ascorbic acid source for sea cucumber, Apostichopus japonicus. Aquaculture

Research 47(8), 2594–2606.

Ren Y., Liu W., Dong S. & Pearce C.M. (2016) Effects of mono-species and bi-species microalgal diets on

the growth, survival and metamorphosis of auricularia larvae of the California sea cucumber,

Parastichopus californicus (Stimpson, 1857). Aquaculture Nutrition 22(2), 304-314.

Renbo W. & Yuan C. (2004) Breeding and culture of the sea cucumber Apostichopus japonicus, Liao. In:

Advances in Sea Cucumber Aquaculture and Management. (ed. by A. Lovatelli, C. Conand, S. Purcell,

S. Uthicke, J.-F. Hamel & A. Mercier), pp. 277-286. Food and Agriculture Organization of the United

Nations, Rome.

Riquelme C.E. & Avendaño-Herrera R.E. (2003) Interacción bacteria-microalga en el ambiente marino y uso

potencial en acuicultura. Revista Chilena de Historia Natural 76, 725-736.

Sambrano A., Diaz H. & Conde J.E. (1990) Caracterización de la ingesta en Isostichopus badionotus

(Selenka) y Holothuria mexicana Ludwig (Echinodermata: Holothuroidea). Caribbean Journal of

Science 26, 45–51.

Seo J. Y., Shin I. S. & Lee S. M. (2011a) Effect of dietary inclusion of various plant ingredients as an

alternative for Sargassum thunbergii on growth and body composition of juvenile sea cucumber

Apostichopus japonicus. Aquaculture Nutrition 17(5), 549–556.

Seo J.Y., Shin I.S. & Lee S.M. (2011b) Effect of various protein sources in formulated diets on the growth

and body composition of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture

Research 42(4), 623–627.

Seo J.-Y.Y. & Lee S.-M.M. (2011) Optimum dietary protein and lipid levels for growth of juvenile sea

cucumber Apostichopus japonicus. Aquaculture Nutrition 17, e56–e61.

Sewell M.A. & McEuen F.S. (2006) Phylum Echinodermata: Holothuroidea, In: Atlas of Marine Invertebrate

Larvae. (Ed. by C. M. Young., M. A. Sewell & M. E. Rice), pp. 513-518. Academia Press. España.

Slater, M.J., Carton, A.G. (2007). Survivorship and growth of the sea cucumber Australostichopus (Stichopus)

mollis (Hutton 1872) in polyculture trials with green-lipped mussel farms. Aquaculture 272, 389-398.

Slater M.J. & Jeffs A.G. (2010) Do benthic sediment characteristics explain the distribution of juveniles of the

deposit-feeding sea cucumber Australostichopus mollis? Journal of Sea Research 64, 241-249.

Slater M.J., Jeffs A.G. & Carton A.G. (2009) The use of the waste from green-lipped mussels as a food source

for juvenile sea cucumber, Australostichopus mollis. Aquaculture 292(3–4), 219–224.

Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo

Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,

M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.

Slater M.J., Lassudrie M. & Jeffs A.G. (2011) Method for determining apparent digestibility of carbohydrate

and protein sources for artificial diets for juvenile sea cucumber, Australostichopus mollis. Journal of

the World Aquaculture Society 42(5), 714–725.

Smiley S. (1986) Metamorphosis of Stichopus californicus (Echinodermata: Holothuroidea) and its

phylogenetic implications. The Biological Bulletin 171, 611-631.

Sun X. & Li Q. (2014) Effects of delayed first feeding on larval growth, survival and development of the sea

cucumber Apostichopus japonicus (Holothuroidea). Aquaculture Research 45, 278-288.

Sun Y., Wen Z., Li X., Meng N., Mi R., Li Y., Li S. (2012) Dietary supplement of fructooligosaccharides and

Bacillus subtilis enhances the growth rate and disease resistance of the sea cucumber Apostichopus

japonicus (Selenka). Aquaculture Research 43, 1328-1334.

Vergara W. & Rodríguez A. (2015) Histología del tubo digestivo de tres especies de pepino de mar

Isostichopus badionotus, Isostichopus sp. y Stichopus hermanni (Aspidochirotida: Stichopodidae).

Revista de Biología Tropical 63(4), 1021-1033.

Wang J., Xu Y., Li X., Li J., Bao P., Che J., Li S. & Jin L. (2015) Vitamin E requirement of sea cucumber

(Apostichopus japonicus) and its’ effects on nonspecific immune responses. Aquaculture Research

(7), 1628–1637.

Xia B., Gao Q.-F., Wang J., Li P., Zhang L. & Zhang Z. (2015a) Effects of dietary carbohydrate level on

growth, biochemical composition and glucose metabolism of juvenile sea cucumber Apostichopus

japonicus (Selenka). Aquaculture 448, 63–70.

Xia B., Wang J., Gao Q.-F., Sun Y., Zhang L., Ma J. & Liu X. (2015b) The nutritional contributions of

dietary protein sources to tissue growth and metabolism of sea cucumber Apostichopus japonicus

(Selenka): Evidence from nitrogen stable isotope analysis. Aquaculture 435, 237-244.

Xia S., Yang H., Li Y., Liu S., Xu Q. & Rajkumar M. (2013a) Effects of food processing method on

digestibility and energy budget of Apostichopus japonicus. Aquaculture 384–387, 128–133.

Xia S., Yang H., Li Y., Liu S., Zhou Y. & Zhang L. (2012a) Effects of different seaweed diets on growth,

digestibility, and ammonia-nitrogen production of the sea cucumber Apostichopus japonicus (Selenka).

Aquaculture 338-341, 304-308.

Xia, S.-D, Zhao, P., Chen, K., Li, Y., Liu, S., Zhang, L., Yang, H. (2012b). Feeding preferences of the sea

cucumber Apostichopus japonicus (Selenka) on various seaweed diets. Aquaculture 344-349, 205–209.

Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo

Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,

M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.

Xia, S.D., Yang, H.S., Li, Y., Liu, S.L., Zhang, L.B., Chen, K. & Zou, A.G. (2013b). Effects of differently

processed diets on growth, immunity and water quality of the sea cucumber, Apostichopus japonicus

(Selenka, 1867). Aquaculture Nutrition 19(3), 382–389.

Xilin S. (2004) The progress and prospects of studies on artificial propagation and culture of the sea

cucumber, Apostichopus japonicus. In: Sea Cucumber Aquaculture: Hatchery production, Juvenile

growth and Industry Challenges. (ed. by A. Mercier & J.-F. Hamel), pp. 431-454. Woodhead Publishing

Ltd, Cambridge.

Xu Q., Hamel J.-F. & Mercier A. (2016) Feeding, digestion, nutritional physiology, and bioenergetics. In: The

Sea Cucumber Apostichopus japonicus: History, Biology and Aquaculture (ed. by H. Yang. J.-F. Hamel

& A. Mercier), pp. 153-176. Academic Press, London.

Yan F., Tian X., Dong S., Fang Z. & Yang G. (2014) Growth performance, immune response, and disease

resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus fed a

supplementary diet of the potential probiotic Paracoccus marcusii DB11. Aquaculture 420-421, 105-

Yanagisawa T. (1998) Aspects of the biology and culture of the sea cucumber. In: Tropical Mariculture (ed.

by. S. de Silva). Academic Press.

Yasoda H.N., Chi Z. & Ling Z.K. (2006) Probiotics and sea cucumber farming. Beche-de-Mer information

Bulletin, 45-48.

Ye W.-J., Tan X.-Y., Chen Y.-D. & Luo Z. (2009) Effects of dietary protein to carbohydrate ratios on growth

and body composition of juvenile yellow catfish, Pelteobagrus fulvidraco (Siluriformes, Bagridae,

Pelteobagrus). Aquaculture Research 40, 1410-1418.

Yu H. B., Gao Q. F., Dong S. L., Wen B., Hou Y. R. & Ning L. G. (2015) Utilization of corn meal and

extruded soybean meal by sea cucumber Apostichopus japonicus (Selenka): Insights from carbon stable

isotope analysis. Aquaculture 435, 106–110.

Yuan, X., Yang, H., Zhou, Y., Mao, Y.Xu, X., Zhang, T. & Liu, Y. (2006). The influence of diets containing

dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber

Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture 256(1–4), 457–467.

Zacarias-Soto M. & Olvera-Novoa M.A. (2015) Effect of different diets on body biochemical composition of

the four-sided sea cucumber, Isostichopus badionotus, under culture conditions. Journal of the World

Aquaculture Society 46(1), 45–52.

Olvera-Novoa, M. et al., 2017. La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo

Intensivo. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., López Acuña, L.M. y Galaviz-Espinoza,

M. . (Eds), Investigación y Desarrollo en Nutrición Acuícola Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México, pp. 106-155.

How to Cite

Olvera-Novoa, M. A., Martínez-Milián, G., & Sánchez-Tapia, I. A. (2017). La Nutrición y Alimentación del Pepino de Mar (Echinodermata, Holothuroidea); Situación Actual y Perspectivas para el Desarrollo de su Cultivo Intensivo. Avances En Nutrición Acuicola. Retrieved from https://nutricionacuicola.uanl.mx/index.php/acu/article/view/6

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.