El papel de la nutrición de peces en la mejoría de la salud humana y la seguridad mundial. The role of fish nutrition in improving human health and global good security

Authors

  • Albert G.J. Tacon

Keywords:

malnutrition, aquaculture, food supply, human health, nutrient fortification

Abstract

Malnutrition represents the world’s greatest preventable health challenge, including both undernutrition and overnutrition. The role play by fish and seafood in global food supply and within the Americas is discussed, with aquatic food products offering a much healthier alternative to farmed terrestrial meat products. The paper highlights the important role played by fish nutrition in the formulation of fish and shrimp feeds, and in particular for the nutritional enhancement of farmed fish products through dietary fortification with essential nutrients and improved health attributes.

Downloads

Download data is not yet available.

References

Aksnes A, Hope B, Albrektsen S. (2006). Size-fractionated fish hydrolysate as feed ingredient for rainbow trout (Oncorhynchus mykiss) fed high plant protein diets. II: Flesh quality, absorption, retention and fillet levels of taurine and anserine. Aquaculture. 261(1):318–326. doi: 10.1016/j.aquaculture.2006.07.026

Anderson RA. (1992). Chromium, glucose tolerance, and diabetes. Biol Trace Elem Res. 32(1-3):19–24. doi:10.1007/ BF02784583

Barber, L.B., S.H. Keefe., R.C. Antweiler., H.E. Taylor & R.D. Wass. (2006). Accumulation of contaminants in fish from waste- water treatment. Environ Sci Technol. 40(2):603–611. doi: 10.1021/es0514287

Barbosa, V., Maulvault, A.L., Anacleto, P., Santos, M., Mai, M., Oliveira, H., Delgado, I., Coelho, I., Barata, M., Araújo‐Luna, R., Ribeiro, L., Eljasik, P., Sobczak, M., Sadowski, J., Tórz, A., Panicz, R., Dias. J., Pousão-Ferreira, P., Carvalho, M.L., Martins, M., Marques, A. (2020). Enriched feeds with iodine and selenium from natural and sustainable sources to modulate farmed gilthead seabream (Sparus aurata) and common carp (Cyprinus carpio) fillets elemental nutritional value. Food and chemical toxiciology, 140: https://doi.org/10.1016/j.fct.2020.111330

Bell JG, McGhee F, Dick JR, Tocher DR. (2005). Dioxin and dioxin-like polychlorinated biphenyls (PCBs) in Scottish farmed salmon (Salmo salar): effects of replacement of dietary marine fish oil with vegetable oils. Aquaculture. 243(1-4):305–314. doi:10.1016/j.aquaculture.2004.10.016

Berntssen MHG, Lundebye A-K, Torstensen BE. (2005). Reducing the levels of dioxins and dioxin-like PCBs in farmed Atlantic salmon by substitution of fish oil with vegetable oil in the feed. Aquac Nutr. 11(3):219–231. doi: 10.1111/j.1365-2095.2005.00345.x

Berntssen MHG, Maage A, Julshamn K, Oeye BE, Lundebye A-K. (2011). Carry-over of dietary organochlorine pesticides, PCDD/Fs, PCBs, and brominated flame retardants to Atlantic salmon (Salmo salar L.) fillets. Chemosphere. 83(2):95–103. doi:10.1016/j.chemosphere.2011.01.017

Berntssen M, Betancor MB, Caballero MJ, Hillestad M, Rasinger JD, Hamre K, Sele V, Amlund H, Ørnsrud R. (2018). Safe limits of selenomethionine and selenite supplementation to plant-based Atlantic salmon feeds. Aquaculture. 495:617–630. doi:10.1016/j.aquaculture.2018. 06.041

Cameron, N.A., Petito, L.C., McCabe, M., Allen, N.B., O’Brien, M.J., Carnethon, M.R., Khan, S.S. (2021). Quantifying the sex-race/ethnicity-specific burden of obesity on incident diabetes mellitus in the United States, 2001 to 2016: MESA and NHANES. J. Am. Heart Assoc. 2021; 10:e018799. DOI: 10.1161/JAHA.120.018799

Dey, M.M., Garcia, Y.T., Praduman, K., Piumsombun, S., Haque, M.S., Li, L., Radam, A., Senaratne, A., Khiem, N.T. and Koeshendrajana, S. (2008). Demand for fish in Asia: a cross‐country analysis. Australian Journal of Agricultural and Resource Economics, 52(3), pp.321-338.

Domingo, J.L., A. Bocio., G. Falco & J.M. Llobet. (2007). Benefits and risks of fish consumption. Part 1. A quantitative ana- lysis of the intake of omega-3 fatty acids and chemical contaminants. Toxicology. 230(2-3):219–226. doi:10.1016/ j.tox.2006.11.054

Escher, B.I., H.M. Stapleton & E.L. Schymanski. (2020). Tracking complex mixtures of chemicals in our changing environment. Science. 367(6476):388–392. doi:10.1126/science. aay6636

FAO. (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en

FAO. (2021a). FAO Food Balance Sheet. http://www.fao.org/faostat/en/#data/FBS. Last update February 19, 2020.

FAO. (2021b). FishStatJ, a tool for fishery statistics analysis. Release: 4.01.1 May 2021. Universal Software for Fishery Statistical Time Series. Global aquaculture production: Quantity 1950–2019; Value 1950–2019; Global capture production. Rome, Italy: FAO. p. 1950–2019.

FAO/WHO. (2011). Report of the joint FAO/WHO expert consultation on the risks and benefits of fish consumption, 25–29 January 2010. Rome, Italy: FAO. p. 50. Fisheries and Aqua- culture Report No. 978 FIPM/R978 (En).

FAO, IFAD, UNICEF, WFP & WHO. (2021). The State of Food Security and Nutrition in the World 2021. Transforming food systems for food security, improved nutrition and affordable healthy diets for all. Rome, FAO. https://doi.org/10.4060/cb4474en

Ferreira, C.M. Reis, N.D., Castro, A.O., Höfelmann, D.A., Kodaira, K., Silva, M.T., Galvao, T.F. (2021). Prevalence of childhood obesity in Brazil: systematic review and meta-analysis. Jornal de Pediatria, https://doi.org/10.1016/j.jped.2020.12.003

Forouhi, N.G., A. Misra., V. Mohan., R. Taylor & W. Yancy. (2018). Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ. 361:k2234.

Global Obesity Observatory (2021). https://data.worldobesity.org/country/mexico-139/#data_trends

Kumar, V Habte-Tsion. H.M., Allen, K.M., Bowman, B.A., Thompson, K.R., El-Haroun, E.,

Filer, K., Tidwell, J.H. (2018). Replacement of fish oil with Schizochytrium meal and its

impacts on the growth and lipid metabolism of Pacific white shrimp (Litopenaeus vannamei). Aquaculture Nutrition, 24: 1769-1781.

Haldorsen A-K, Lock E-J, Rasinger JD, Nøstbakken OJ, Hannisdal R, Karlsbakk E, Wennevik V, Madhun AS, Madsen L, Graff IE, et al. (2017). Lower levels of Persistent Organic Pollutants, metals and the marine omega 3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar). Environ Res. 155:49–59. doi:10.1016/j. envres.2017.01.026

Harare K, Berge RK, Lie Ø. (1998). Oxidative stability of Atlantic salmon (Salmo salar, L.) fillet enriched in alpha -, gamma -, and delta -tocopherol through dietary supplementation. Food Chem. 62(2):173–178. doi:10.1016/S0308-8146(97)00209-4

He, K. (2009). Fish, long-chain omega-3 polyunsaturated fatty acids and prevention of cardiovascular disease-eat fish or take fish oil supplement? Prog Cardiovasc Dis. 52(2): 95–114. doi:10.1016/j.pcad.2009.06.003

Hellberg, R.S., C.A.M. De Witt & M.T. Morrissey. (2012). Risk-benefit analysis of seafood consumption: a review. Compr Rev Food Sci F. 11(5):490–517. doi:10.1111/j.1541-4337. 2012.00200.x

Henry CJ, Kaur B, Quek RYC. (2020). Are Asian foods as “fattening” as western-styled fast foods? European J Clin Nutr. 74(2):348–350. 2010). doi:10.1038/s41430-019- 0537-3

Heshmati A, Sadati R, Ghavami M, Khaneghah AM. (2019). The concentration of potentially toxic elements (PTEs) in muscle tissue of farmed Iranian rainbow trout (Oncorhynchus mykiss), feed, and water samples collected from the West of Iran: A risk assessment study. Environ Sci Pollut Res. 26(33):34584–34593. doi:10.1007/s11356- 019-06593-x

Harvard Health Publishing (HHP). (2011) September 14. Harvard to USDA: check out the healthy eating plate. Harvard Medical School. [accessed 2020 February 28]. https://www.health.harvard.edu/blog/harvard-to-usda- check-out-the-healthy-eating-plate-201109143344.

Jiratanan T. (2007). Development of omega-3 fatty acid enhanced tilapia (Oreochromis niloticus) (alpha-Linolenic acid). Dissertation Abstr Int. 68(3, suppl. B):92.

Jorge, T.B.F., Moura, G.S., Ribeiro-Junior, V., Donzele, J.L., Pedreira, M.M.. 2021, Sousa, T.V., Lanna, E.A.T. 2021. Effects of dietary supplementation time with Schizochytrium microalgae meal on growth, meat quality and fatty acid composition of Nile tilapia. Aquaculture Research, doi.org/10.1111/are.15597

Julshamn K, Maage A, Waagbo R, Lundebye A-K. (2006). A preliminary study on tailoring of fillet iodine concentrations in adult Atlantic salmon (Salmo salar L.) through dietary supplementation. Aquac Nutrition. 12(1):45–51. doi:10.1111/j.1365-2095.2006.00380.x

Kousoulaki K, Mørkøre T, Nengas I, Berge RK, Sweetman J. (2016). Microalgae and organic minerals enhance lipid retention efficiency and fillet quality in Atlantic salmon (Salmo salar L. Aquaculture. 451:47–57. doi:10.1016/j. aquaculture.2015.08.027

Kwasek, K., A.L. Thorne-Lyman & M. Phillips. (2020). Can human nutrition be improved through better fish feeding practices? A review paper. Crit Rev Food Sci Nutr. 25:1–14.

Lawrence, J.M., Divers, J., Isom, S., Saydah, S., Imperatore, G., Pihoker, K., Marcovina, S.M., Mayer-Davis, E.J., Hamman, R.F., Dolan, L., Dabelea, D., Pettitt, D.J., Liese, A.D. (2021). Trends in prevalence of type 1 and type 2 diabetes in children and adolescents in the US, 2001-2017. JAMA 326(8):717-727.

LiH,MengX,WanW,LiuH,SunM,WangH,WangJ. (2018). Effects of chromium picolinate supplementation on growth, body composition, and biochemical parameters in Nile tilapia Oreochromis niloticus. Fish Physiol Biochem. 44(5):1265–1274. doi:10.1007/s10695- 018-0514-0

Lie, Ø. editor. (2008). Improving farmed fish quality and safety. Cambridge: Woodland Publishing Ltd. p. 648.

Lorentzen M, Maage A, Julshamn K. (1994). Effects of dietary selenite or selenomethionine on tissue selenium concentrations of Atlantic salmon (Salmo salar). Aquaculture. 121(4):359–367. doi:10.1016/0044-8486(94)90270-4

Luten J, Schram E, and E. Elvevoll (2008). Tailor-made functional seafood for consumers: dietary modulation of selenium and taurine in farmed fish pp.343–362. In: Lie, Ø. editor. Improving farmed fish quality and safety. Cambridge: Woodland Publishing Ltd. p. 648.

Manning BB, Li MH, Robinson EH. (2007). Feeding Channel catfish, Ictalurus punctatus, diets amended with refined marine fish oil elevates omega-3 highly unsaturated fatty acids in fillets. J World Aquaculture Soc. 38(1):49–58. doi:10.1111/j.1749-7345.2006.00072.x

Manning BB, Li MH, Robinson EH, Peterson BC. (2006). Enrichment of channel catfish (Ictalurus punctatus) fillets with conjugated linoleic acid and omega-3 fatty acids by dietary manipulation. Aquaculture. 261(1):337–342. doi: 10.1016/j.aquaculture.2006.07.029

Maule, A.G., A.L. Gannam & J.W. Davis. (2007). Chemical contam- inants in fish feeds used in federal salmonid hatcheries in the USA. Chemosphere. 67(7):1308–1315. doi:10.1016/j. chemosphere.2006.11.029

Mihalca GL, Tit ̧ O, Tit ̧a M, Mihalca A. (2011). Effect of dietary alpha-tocopheryl acetate on alpha-tocopherol content of novel omega-3-enhanced farmed rainbow trout (Oncorhynchus mykiss) fillets. J Agroaliment Processes Technol. 17(3):295–302.

Michikawa T, Inoue M, Shimazu T, Sawada N, Iwasaki M, Sasazuki S, Yamaji T, Tsugane S. (2012). Seaweed consumption and the risk of thyroid cancer in women: The Japan Public Health Center-based Prospective Study. Eur J Cancer Prev. 21(3):254–260. doi:10.1097/CEJ. 0b013e32834a8042

Morabito, S., Silvestro, S. and Faggio, C. (2018). How the marine biotoxins affect human health. Natural Product Research, 32(6):621-631.

Mozaffarian D, Ludwig DS. (2010). Dietary guidelines in the 21st century: a time for food. JAMA. 304(6):681–682. doi:10.1001/jama.2010.1116

Nanton DA, Ruohonen K, Robb DHF, El-Mowafi A, Hartnell GF. (2012). Effect of soy oil containing stearidonic acid on growth performance and fillet fatty acid compos- ition of Atlantic salmon. Aquacult Nutr. 18(6):640–650. doi:10.1111/j.1365-2095.2011.00922.x

Ng W-K, Chong C-Y, Wang Y, Romano N. (2013). Effects of dietary fish and vegetable oils on the growth, tissue fatty acid composition, oxidative stability and vitamin E content of red hybrid tilapia and efficacy of using fish oil finishing diets. Aquaculture. 372-375:97–110. doi:10.1016/ j.aquaculture.2012.10.030

National Health and Medical Research Council (NHMRC). (2013). Eat for health: Australian dietary guidelines. Canberra, Australia: National Health and Medical Research Council. p. 210.

Nicklisch, S.C.T., L.T. Bonito., S. Sandin & A. Hamdoun. (2017). Geographic differences in persistent organic pollutant levels of Yellowfin Tuna. Environ Health Perspect. 125(6): 067014. doi:10.1289/EHP518

Nonwachai T, Purivirojkul W, Limsuwan C, Chuchird N, Velasco M, Dhar AK. (2010). Growth, nonspecific immune characteristics, and survival upon challenge with Vibrio harveyi in Pacific white shrimp (Litopenaeus vannamei) raised on diets containing algal meal. Fish Shellfish Immun. 29(2):298–304. doi:10.1016/j.fsi.2010.04.009

Pan A, Malik V, Hu FB. (2012). Exporting diabetes to Asia: the impact of western-style fast food. Circulation. 126(2): 163–165. doi:10.1161/CIRCULATIONAHA.112.115923

Petenuci ME, Schneider VVA, Lopes AP, Gonc ̧alves RM, Dos Santos VJ, Matsushita M, Visentainer JV. (2018). Effect of alpha-linolenic acid sources in diets for Nile Tilapia on fatty acid composition of fish fillet using principal component anlysis. J Aquat Food Prod Technol. 27(4):464–476. doi:10.1080/10498850.2018.1448917

Reames E. (2012). Nutritional benefits of seafood. Stoneville, MS: Southern Regional Aquaculture Center (SRAC) Publication No. 7300. p. 6.

Ribeiro A.R., Goncalves A, Bandarra N, Nunes ML, Dinis MT, Dias J, Rema P. (2017). Natural fortification of trout with dietary macroalgae and selenised-yeast increases the nutritional contribution in iodine and selenium. Food Res Internat. 99(3):1103–1109. doi:10.1016/j.foodres.2016. 10.030

Rosenlund, G., G. Corraze, M. Izquierdo, and B.E. Tortensen. (2011). The effects of fish oil replacement on nutritional and organoleptic qualities of farmed fish, pp.487-522. In: Turchini G.M., Ng W.-K., Tocher D.R., editors. Fish oil replacement and alternative lipid sources in aquaculture feeds. CRC Press, Taylor & Francis Group. p. 551.

Sargent, J.R. & A.G.J. Tacon. (1999). Development of farmed fish: a nutritionally necessary alternative to meat. Proc Nutr Soc. 58(2):377–383. doi:10.1017/S0029665199001366

Sarker PK, Kapuscinski AR, Lanois AJ, Livesey ED, Bernhard KP, Coley ML. (2016). Towards sustainable aqua- feeds: complete substitution of fish oil with marine microalga Schizochytrium sp. improves growth and fatty acid deposition in juvenile Nile Tilapia (Oreochromis niloticus). Plos One. 11(6):e0156684. doi:10.1371/journal. pone.0156684

Schmid S, Ranz D, He ML, Bukard S, Lukowics MV, Reiter R, Arnold R, LeDeit H, David M, Rambeck WA. (2003). Marine algae as natural source of iodine in the feeding of freshwater fish: a new possibility to improve iodine supply in man. Rev Med Vet. 154:645–648.

Schmid, P., M. Kohler., E. Gujer., M. Zennegg & M. Lanfranchi. (2007). Persistent organic pollutants, brominated flame retardants and synthetic musks in fish from remote alpine lakes in Switzerland. Chemosphere. 67(9):S16–S21. doi:10.1016/j.chemosphere.2006.05.080

Schram E, Pedrero Z, Camara C, van der Heul JW, Luten BJ. (2008). Enrichment of African catfish with functional selenium originating from garlic. Aquaculture Res. 39(8): 850–860. doi:10.1111/j.1365-2109.2008.01938.x

Sele V, Ørnsrud R, Sloth JJ, Berntssen MHG, Amlund H. (2018). Selenium and selenium species in feeds and muscle tissue of Atlantic salmon. J Trace Elem Med Bio. 47: 124–133. doi:10.1016/j.jtemb.2018.02.005

Sigurgisladottir S, Parrish CC, Lall SP, Ackman RG. (1994). Effects of feeding natural tocopherols and astaxanthin on Atlantic salmon (Salmo salar) fillet quality. Food Res Internat. 27(1):23–32. doi:10.1016/0963-9969(94)90174-0

Silva, L.E.S., Oliveira, M.M., Stopa, S.R., Gouvea, E.C.D.P., Ferreira, K.R.D., Santos, R.O., Valença Neto, P.F., Macário, E.M., Sardinha, L.M.V. (2021). Temporal trend of overweight and obesity prevalence among Brazilian adults, according to sociodemographic characteristics, 2006-2019. Epidemiol. Serv. Saude, Brasília, 30(1):e2020294, 2021. Doi: 10.1590/S1679-49742021000100008

Skerrett PJ, Willett WC. (2010). Essentials of healthy eating: a guide. J Midwifery Womens Health. 55(6):492–501. doi: 10.1016/j.jmwh.2010.06.019

Sprague M, Dick JR, Tocher DR. (2016). Impact of sustain- able feeds on omega-3 long-chain fatty acid levels in farmed Atlantic Salmon, 2006–2015. Sci Rep. 6(1):21892. doi:10.1038/srep21892

Stoneham TR, Kuhn DD, Taylor DP, Neilson AP, Smith SA, Gatlin DM, Chu H, O’Keefe SF. (2018). Production of omega-3 enriched tilapia through the dietary use of algae meal or fish oil: Improved nutrient value of fillet and offal. Plos One. 13(4):e0194241. doi:10.1371/journal.pone.0194241

Tacon, A.G.J. (2020). Trends in global aquaculture and aqua- feed production: 2000–2017. Rev Fish Sci Aquacult. 28(1):43–56. doi:10.1080/23308249.2019.1649634

Tacon, A.G.J. & M. Metian. (2008). Aquaculture feed and food safety: the role of FAO and Codex Alimentarius. Ann Newyork Acad Sci. 1140(1):50–59. doi:10.1196/annals. 1454.003

Tacon A.G.J. & M. Metian. (2013). Fish Matters: importance of aquatic foods in human nutrition and global food supply. Rev Fish Sci. 21(1):1–17.

Tacon, A.G.J. & M. Metian. (2017). Food matters: fish, income, and food supply - a comparative analysis, Reviews in Fisheries Science & Aquaculture, 26(1):15-28.

Tacon, A.G.J., D. Lemos, and M. Metain. (2020). Fish for health: improved nutritional quality of cultured fish for human consumption. Reviews in Fisheries Science & Aquaculture, 28(4):449–458.

Torstensen B, Froyland L, Ornsrud R, Lie O. (2004). Tailoring of a cardioprotective fillet fatty acid compos- ition of Atlantic salmon (Salmo salar) fed vegetable oils. Food Chem.87(4):567–580. doi:10.1016/j.foodchem.2004. 01.009

Turchini GM, Trushenski JT, Glencross BD. (2019). Thoughts for the future of aquaculture nutrition: realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. North Am J Aquacult. 81(1):13–39. doi:10.1002/naaq.10067

US Department of Agriculture (USDA). (2018). Composition of Foods: raw, processed, prepared. USDA National Nutrient Database for Standard Reference, Legacy April 2018, Slightly revised July 2018. http://www.ars.usda.gov/ nutrientdata.

U.S. Department of Health & Human Services and U.S. Department of Agriculture (USDHHS/USDA). (2015). 2015–2020 Dietary Guidelines for Americans. 8th Edition. December 2015. http://health.gov/dietaryguide- lines/2015/guidelines/.

Verbeke, W., I. Sioen., Z. Pieniak., J. Van Camp & S. De Henauw. (2005). Consumer perception versus scientific evidence about health benefits and safety risks from fish consumption. Public Health Nutr.Nutr8(4):422–429. doi:10.1079/ PHN2004697

Vitenskapskomiteen (VKM). (2014). Benefit-risk assessment of fish and fish products in the Norwegian diet – an update. Scientific Opinion of the Scientific Steering Committee. VKM Report 15. Oslo, Norway. p. 293. ISBN: 978-82-8259-159-1. www.vkm.no.

Waagbø R, Sandnes K, Torrissen OJ, Sandvin A, Lie Ø. (1993). Chemical and sensory evaluation of fillets from Atlantic salmon (Salmo salar) fed three levels of N-3 polyunsaturated fatty acids at two levels of vitamin E. Food Chem.46(4):361–366. doi:10.1016/0308-8146(93) 90005-Z

Wallin, A., D. Di Giuseppe., N. Orsini., P.S. Patel., N.G. Forouhi & A. Wolk. (2012). Fish consumption, dietary long-chain n-3 fatty acids, and risk of type 2 diabetes-systemic review and met-analysis of prospective studies. Diabetes Care.35(4):918–929. doi:10.2337/dc11-1631

Wang, Y., Li, M., Filer, K., Xue, Y., Ai, Q., Mai, K. (2016). Replacement of fish oil with a DHA-rich Schizochytrium meal on growth performance, activities of digestive enzyme and fatty acid profile of Pacific white shrimp (Litopenaeus vannamei) larvae. Aquaculture Nutrition, 23:1113–1120.Watters CA, Rosner LS, Franke AA, Dominy WD, Klinger- Bowen R-E, Tamaru CS. (2013). Watters CA, Rosner LS, Franke AA, Dominy WD, Klinger- Bowen R-E, Tamaru CS. 2013. Nutritional Enhancement of long-chain omega-3 fatty acids in Tilapia (Oreochromis honorum). Bamidgeh. 65(869):1–7.

Weber, K. & H. Goerke. (2003). Persistent organic pollutants (POPs) in Antarctic fish: levels, patterns, changes. Chemosphere. 53(6):667–678. doi:10.1016/S0045-6535(03) 00551-4

WHO. (2017). The double burden of malnutrition. Policy brief. Geneva: World Health Organization; 2017. WHO/NMH/NHD/17.3, 11p.

WHO. (2021a). Malnutrition, 9 June 2021. https://www.who.int/news-room/fact-sheets/detail/malnutrition

Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A. and Jonell, M., et al. (2019). Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393(10170), pp.447-492.

World Bank (2021b). Percentage adults living with obesity, selected countries, 1960-2019. https://data.worldobesity.org/country/mexico-139/#data_trends

Xanthos, D. & T.R. Walker. (2017). International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review. Mar Pollut Bull. 118(1-2):17–26. doi:10.1016/j.marpolbul.2017.02.048

Published

2022-10-12

How to Cite

Tacon, A. G. (2022). El papel de la nutrición de peces en la mejoría de la salud humana y la seguridad mundial. The role of fish nutrition in improving human health and global good security. Avances En Nutrición Acuicola, 1(1), 7–24. Retrieved from https://nutricionacuicola.uanl.mx/index.php/acu/article/view/350

Similar Articles

<< < 8 9 10 11 12 13 

You may also start an advanced similarity search for this article.