Implementación de un Bioensayo in vitro con Células Disociadas de Hepatopáncreas de Palaemon serratus y Procambarus bouvieri para Detectar la Secreción de la a-Amilasa.
Abstract
En los crustáceos la digestión comienza en la cavidad cardíaca del estómago y se continúa
en los túbulos del hepatopáncreas (Vonk, 1960). Es a nivel de esta glándula que la digestión
se hace más activa (Van Wormhoudt, 1980), asegurada por enzimas secretadas por células
especializadas (Barker y Gibson, 1977). Cinco tipos celulares han sido descritos: las células E
(embryonic cells), las células R (resorptive cells), las células F (fibrilar cells), las células B
(blister-like cells) y las células M (midget cells) (Al-Mohanna et al., 1985a,b; Al-Mohanna y
Nott, 1987a,b; Vogt, 1994). El porcentage de cada tipo de células varia en función del estadio
de muda, las células F, responsables de la síntesis y de la secreción de las enzimas
digestivas se encuentran en mayor concentración en la intermuda (estadio C) (Toullec et al.,
1992).
Downloads
References
Aguilar, M. B., Soyez, D., Falcheto, R., Arnott, D., Shabanowitz, J., Hunt, D. F. & Huberman, A. (1995).
Amino acid sequence of the minor isomorph of the crustacean hyperglycemic hormone (cHH-II) of
the mexican crayfish Procambarus bouvieri (Ortmann): Presence of D-amino acid. Peptides, 16(8):
-1383.
Al-Mohanna, S. Y., Nott, J. A. & Lane, D. J. W. (1985 a). M. < Midget> cells in the hepatopancreas of the
shrimp Penaeus semisulcatus de Hann. Crustaceana, 48: 260-268.
Al-Mohanna, S. Y., Nott, J. A. & Lane, D. J. W. (1985 b). Mitotic E- and F-cells in the hepatopancreas of the
shrimp Penaeus semisulcatus (Crustacea: Decapoda). J. Mar. Biol. Ass. UK, 65: 901-910.
Al-Mohanna, S. Y. & Nott, J. A. (1987 a). M. < Midget> cells and moult cycle in Penaeus semisulcatus
(Crustacea: Decapoda). J. Mar. Biol. Ass. U. K., 67: 803-813.
Al-Mohanna, S. Y. & Nott, J. A. (1987 b). R-cells and the digestive cycle in Penaeus semisulcatus
(Crustacea: Decapoda). Marine Biology, 95: 129-137.
Barker, P. & Gibson, R. (1977). Observations on the structure of mouthparts, histology of the alimentary tract,
and digestive physiology of the mud crab Scylla serrata (Decapoda: Portunidae). J. Exp. Mar. Biol.
Ecol., 32: 177-196.
Cancre, I. (1997). Recherche de Facteurs de croissance chez les invertebrés marins: Approche biologique in
vivo et in vitro, immunologique, biochimique et moléculaire. Thèse d’Université de Bretagne
Occidentale. Mention: Chimie Marine. 191p.
Chung, J. S. & Webster, S. G. (1996) Does the N-terminal pyroglutamate residue have any physiological
significacance for crab hyperglycemic neuropeptides? Eur. J. Biochem, 240 (2): 358-364.
De Villez, E.& Fyler, D. J. (1985). Isolation of hepatopancreatic cell types and enzymatic activities in B cells of
the crayfish Orconectes rusticus. Can. J. Zool., 64: 81-83.
Fingerman, M., Dominiczak, T. Oguro, C. & Yamamoto, Y. (1967). Neuroendocrine control of the
hepatopancreas in the crayfish Procambarus clarkii. Physiol. Zool., 40: 23-30.
Gardner, J. D. (1979). Regulation of pancreatic exocrine function in vitro: initial steps in the actions of
secretagogues. Ann. Rev. Physiol., 41: 55-66.
Giard, W., Favrel, P. & Boucaud-Comou, E. (1995). In vitro investigation of alfa-amylase release from the
digestive cells of the bivalve mollusc Pecten maximus: Effect of second messengers and biogenic
amines. J. Comp. Physiol., 164(7): 518-523.
Gibson, R. & Baker. P. L. (1979). The decapod hepatopancreas. Oceanogr. Mar. Biol. Ann. Rev., 17: 285-346.
Hazra, A. K. , Chock, S. P. & Albers, R. W. (1984). Protein determination with trinitrobenzene sulfonate: A
method relatively indepent of amino acid composition. Anal. Biochem., 137: 437-443.
Huberman, A., Aguilar, M. B., Brew, K., Shabanowitz, J. & Hunt, D. F. (1993). Primary structure of the
major isomorph of the crustacean hyperglycaemic hormone (cHH-I) from the sinus gland of Mexican
crayfish Procambarus bouvieri (Ortmann): Interspecies comparaison. Peptides, 14: 7-16.
Huberman, A., Aguilar, M. B. & Quakenbush, L. S. (1995). A neuropeptide family from the sinus gland of the
Mexican crayfish, Procambarus bouvieri (Ortmann). Aquaculture, 135: 149-160.
Knight, D. E. & Koh, E. (1984). Ca 2+ and cyclic nucleotide dependence of amylase release from isolated rat
pancreatic acinar cells rendered permeable by intense electric fields. Cell Calcium, 5: 401-418.
Kono, M., Wilder, M. N., Matsui, T., Furukawa, K., Koga, D. & Aida, K. (1995). Chitinolytic enzyme activities
in the hepatopancreas, tail fan and hemolymph of kuruma prawn Penaeus japonicus during the molt
cycle. Fish. Sci., 61(4): 727-728.
Kummer, G. & Keller, R. (1993). High-affinity binding of crustacean hyperglycemic hormone ( cHH) to
hepatopancreatic plasma membranes of the crab Carcinus maenas and the crayfish Orconectes
limosus. Peptides, 14: 103-108.
Lowry, O. M., Rosbrougt, M. J., Farr, A. L. & Andrandall, R. J. (1951). Protein measurement with Folin
Phenol reagent. J. Biol. Chem., 193: 267-275.
O’doherty, J. & Stark, R. J. (1982). Stimulation of pancreatic acinar secretion: increases in cytosolic calcium
and sodium. Am. J. Physiol., 242: G513-521.
Santos, E. A. & Stefanello, T. M. (1991). The hemolymph of Chasmagnathus granulata Dana, 1851
(Decapoda-Grapsidae) as a target tissue of crustacean hyperglycemic hormone. Braz. J. Med. Biol.
Res., 24(3): 267-270.
Sedlmeier, D. (1988). The crustacean hyperglycemic hormone (CHH) releases amylase from the crayfish
midgut gland. Regulatory Peptides, 20: 91-98.
Sefiani, M., Le Caer, J. P. & Soyez, D. (1996). Characterization of hyperglycemic and molt-inhibiting activity
from sinus glands of the penaeid shrimp Penaeus vannamei.. Gen. Comp. Endocrinol., 103(1): 41-
Soyez, D., Van Herp, F., Rossier, J., Le Caer, J-P., Tensen, C. P. & Lafont, R. (1994). Evidence for a
conformational polymorphism of invertebrate neurohormones. J. Biol. Chem., 269: 18295-18298.
Toullec, J. Y., Chikhi, M. & Van Wormhoudt, A. (1992). In vitro protein synthesis and amylase activity in F
cells from hepatopancreas of Palaemon serratus (Crustacea; Decapoda). Experientia, 48: 272-277.
Van Harreveld, A. (1936). A physiological solution for fresh water crustaceans. Soc. Exp. Biol. Med. Proc., 34:
-432.
Van Herp, F.; Van Wormhoudt, A.; Van Venroy, W. A. J. & Bellon-Humbert, C. (1984).
Immunocytochemical study of crustacean hyperglycemic hormone in the eyestalks of prawn
Palaemon serratus (Pennant) and some other palaemonidae, in relation to variation in the blood
glucose level. J. Morphol., 182: 85-94.
Van Wormhoudt, A., Ceccaldi, H. J. & Le Gal, Y. (1972). Activité des proteases et amylases chez Penaeus
kerathurus : existence d'un rythme circadien. C. R. Acad. Sc. Paris, 274: 1208-1211.
Van Wormhoudt, A. (1980). Regulation d’activité de l’a-amylase à diiférentes températures d’adaptation et en
fonction de l’ablation des pédoncules oculaires et du stade de mue chez Palaemon serratus.
Biochem. Syst. Ecol., 8: 193-203.
Van Wormhoudt, A., Van Herp, F., Bellon, C., Ceccaldi, H. J. & Keller, R. (1984): Changes and Crustacean
hyperglycemic hormone in Palaemon serratus (Crustacea, Decapoda, Natantia) during the different
steps of purification. Comp. Biochem. Physiol., 79B(31): 353-360.
Vogt, G. (1994). Life-cycle and functional cytology of the hepatopancreatic cells of Astacus astacus
(Crustacea, Decapoda). Zoomorphology, 114: 83-101.
Vonk, H. J. (1960). Digestion and metabolism. In: Physiology of Crustacea. Vol. I. Metabolism and growth
(Edited by Waterman T. H.) Academic Press. N. Y.,: 291-316.
Webster, S. G. (1986). Neurohormonal control of ecdysteroid biosynthesis by Carcinus maenas Y-organs in
vitro, and preliminary characterisation of the putative molt-inhibiting hormone (MIH). Gen. Comp.
Endocrinol., 61(2): 237-247.
Yasuda, A.; Yasuda, Y.; Fujita, T. & Naya, Y. (1994). Characterisation of crustacean hyperglycemic hormone
from the crayfish (Procambarus clarkii): Multiplicity of molecular forms by stereoinversion and diverse
function. Gen. Comp. Endocrinol., 95: 387-398.