Uso de Alimentos no Convencionales en Acuicultura: Estudios Realizados en la Universidad Federal de Rio Grande –FURG


  • Marcelo Tesser Universidade Federal do Rio Grande-FURG, Instituto de Oceanografia, Laboratório de Nutrição de Organismos Aquáticos
  • Victor Torres Rosas 2Universidade Federal do Rio Grande-FURG, Instituto de Oceanografia, Laboratório de Carcinocultura

Palabras clave:

alimentos alternativos, harina de pescado, sustentabilidad


La producción acuícola ha ido creciendo en todo el mundo y por consiguiente la producción de raciones para alimentar los organismos. El incremento para satisfacer la demanda genera una mayor presión sobre diversos insumos para la fabricación de raciones. Entre ellos, los alimentos procedentes de la agricultura y de la pesca.  Este artículo tiene como objetivo señalar algunos estudios realizados por la FURG sobre el uso de alimentos no convencionales para la fabricación de raciones para organismos acuáticos.


Los datos de descargas todavía no están disponibles.


Bandara T. 2018. Alternative feed ingredients in aquaculture: opportunities and challenges. J. Entomol Zool Stud. 6(2):3087–3094.

Batista, C. D. C. R., de Oliveira, M. S., Araújo, M. E., Rodrigues, A. M., Botelho, J. R. S., da Silva Souza Filho, A. P. Junior, R. N. C. (2016). Supercritical CO2 extraction of açaí (Euterpe oleracea) berry oil: Global yield, fatty acids, allelopathic activities, and determination of phenolic and anthocyanins total compounds in the residual pulp. The Journal of Supercritical Fluids, 107, 364-369.

Bauer, W. Prentice-Hernandez, C.; Tesser, M.B.; Wasielesky, W.; Poersch, L.H. 2012. Substitution of fishmeal with microbial floc meal and soy protein concentrate in diets for the Pacific white shrimp Litopenaeus vannamei. Aquaculture, 342–343, p. 112-116.

Bechtel, P. J. (2003). Properties of different fish processing by-products from pollock, cod and salmon. Journal of Food Processing and Preservation, 27(2), 101–116.

Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology advances, 25(2), 207-210.

Benemann, J. R. (1992). Microalgae aquaculture feeds. Journal of Applied phycology, 4(3), 233-245.

Candiotto, F.B.; Freitas, A.C.V.; Neri, R.C.A.; Bezerra, R.S, Vieira, R.R.; Sampaio, L.A.; Tesser, M.B. 2018. Characterization of digestive enzymes from captive Brazilian flounder Paralichthys orbignyanus. Brazilian Journal of Biology, v.78, 281-288.

Cardozo, K. H., Guaratini, T., Barros, M. P., Falcão, V. R., Tonon, A. P., Lopes, N. P., & Pinto, E. (2007). Metabolites from algae with economical impact. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146(1-2), 60-78.

Carvalho, C.V.A.; Bianchini, A.; Tesser, M.B.; Sampaio, L.A. (2010). The effect of protein levels on growth, postprandial excretion and tryptic activity of juvenile mullet Mugil platanus (Günther). Aquaculture Research, v. 41, p. 511-518.

Colombo, G. M., dos Santos Simião, C., Schmitz, M. J., Pedrosa, V. F., Romano, L. A., Tesser, M. B., ... & Monserrat, J. M. (2020). The role of açaí (Euterpe oleracea Mart. 1824) as a chemoprotective agent in the evaluation of antioxidant defence, oxidative damage and histology of juvenile shrimp Litopenaeus vannamei (BOONE, 1931) exposed to ammonia. Aquaculture Research, 51(4), 1551-1566.

Costa, A. G. V., Garcia-Diaz, D. F., Jimenez, P., & Silva, P. I. (2013). Bioactive compounds and health benefits of exotic tropical red–black berries. Journal of functional foods, 5(2), 539-549.

Crab, R.; Defoirdt, T.; Bossier, P. (2012). Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 356-357, p.351-356.

da Silva, T. V., Torres, M. F., Sampaio, L. A., Hamoy, M., Monserrat, J. M., & Barbas, L. A. L. (2021). Dietary Euterpe oleracea Mart. attenuates seizures and damage to lipids in the brain of Colossoma macropomum. Fish Physiology and Biochemistry, 1-14.

Darnet, S., Serra, J. L., Rodrigues, A. M. C., & Silva, L. H. M. (2011). A highperformance liquid chromatography method to measure tocopherols in assai pulp (Euterpe oleracea). Food Research International, 44, 2107–2111.

de Lima Yamaguchi, K. K., Pereira, L. F. R., Lamarão, C. V., Lima, E. S., & da Veiga-Junior, V. F. (2015). Amazon acai: chemistry and biological activities: a review. Food chemistry, 179, 137-151.

FAO. (2016). El estado mundial de la pesca y la acuicultura 2016. Contribución a la seguridad alimentaria y la nutrición para todos. FAO, Roma. 224 pp

Food and Agriculture Organization FAO. (2020). El estado mundial de la pesca y la acuicultura 2020. La sostenibilidad en acción. Roma.

Gaona, C.A.P.; Serra, F.P.; Furtado, P.S.; Poersch, L.H. ; Wasielesky, W. 2016. Biofloc management with different flow rates for solids removal in the Litopenaeus vannamei BFT culture system. Aquaculture International, v. 24, p. 1263-1275.

Gershwin M.E., Belay A. (Eds.) (2007). Spirulina in Human Nutrition and Health. Taylor and Francis, London.

Ghaly A.E., Ramakrishnan V.V., Brooks M.S., Budge S.M., Dave D. (2013). Fish processing wastes as a potential source of proteins, amino acids and oils: a critical review. J. Microb Biochem Technol 5:107–129

Glencross, B. D., Booth, M., Allan, G. L. (2007). A feed is only as good as its ingredients–a review of ingredient evaluation strategies for aquaculture feeds. Aquaculture nutrition, 13(1), 17-34.

Gong, M., & Bassi, A. (2016). Carotenoids from microalgae: A review of recent developments. Biotechnology advances, 34(8), 1396-1412.

Gressler, V., Yokoya, N. S., Fujii, M. T., Colepicolo, P., Mancini Filho, J., Torres, R. P., & Pinto, E. (2010). Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food chemistry, 120(2), 585-590.

Habib, M. A. B. (2008). Review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. Food and agriculture organization of the united nations.

He, S., Franco, C., & Zhang, W. (2013). Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Research International, 50(1), 289-297.

Instituto Brasileiro de Geografia e Estatística. IBGE. (2020). v4.6.11

Kaparapu, J. (2018). Application of microalgae in aquaculture. Phykos, 48(1), 21-26.

Krummenauer, D.; Samocha, T.M. ; Poersch, L. H. ; Lara G. R. ; Wasielesky JR, Wilson. (2014). The Reuse of Water on the Culture of Pacific White Shrimp, in BFT System. Journal of the World Aquaculture Society, v. 45, p. 3-14.

Krummenauer, D; Abreu, P.C.; Poersch, L.; REIS, P. A. C. P.; Suita, S.; Reis, W. G.; Wasielesky, W.J. (2020). The relationship between shrimp (Litopenaeus vannamei) size and biofloc consumption determined by the stable isotope technique. Aquaculture, v. 529, p. 735635, 2020.

Kuhn, D.D., Boardman, G.D., Lawrence, A.L., Marsh, L., Flick, G.J. (2009). Microbial flocs generated in bioreactors is a superior replacement ingredient for fishmeal or soybean meal in shrimp feed. Aquaculture 296, 51–57.

Leite, T. C., Picoli, F., Lopes, D. D. A., Baldissera, M. D., Souza, C. F., Baldisserotto, B., Da Silva, A. S. (2021). The effects of açaí oil addition in tilapia diets on performance, hepatic energy metabolism enzymes and antioxidant responses. Aquaculture Research, 52(1), 395-402.

Lucas, B. F., Zambiazi, R. C., & Costa, J. A. V. (2018). Biocompounds and physical properties of açaí pulp dried by different methods. LWT, 98, 335-340.

Lunn, J.; Buttriss, J. L., (2007). Carbohydrates and dietary fiber. Nutr. Bull. 32, 21–64.

Macias-Sancho, J., Poersch, L. H., Bauer, W., Romano, L. A., Wasielesky, W., & Tesser, M. B. (2014). Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: effects on growth and immunological parameters. Aquaculture, 426, 120-125.

Mendonça, A. J. C. D., Rosas, V. T., Monserrat, J. M., Romano, L. A., & Tesser, M. B. (2019). The inclusion of algae Gracilaria domingensis in the diet of mullet juveniles (Mugil liza) improves the immune response. Journal of Applied Aquaculture, 31(3), 210-223.

National Research Council. (2011). Nutrient requirements of fish and shrimp. Washington: The National Academies Press; p. 376.

Nawaz, A., Li, E., Irshad, S., Xiong, Z., Xiong, H., Shahbaz, H. M., Siddique, F. (2020). Valorization of fisheries by-products: Challenges and technical concerns to food industry. Trends in Food Science & Technology, 99, 34-43.

Naylor, R.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. (2020). A 20-year retrospective review of global aquaculture. Nature, v. 591, p. 551-563.

Nguyen, T. H., Nagasaka, R., & Ohshima, T. (2013). The natural antioxidant ergothioneine: resources, chemical characterization, and applications. In Lipid Oxidation (pp. 381-415). AOCS Press.

Norsker, N. H., Barbosa, M. J., Vermuë, M. H., & Wijffels, R. H. (2011). Microalgal production—a close look at the economics. Biotechnology advances, 29(1), 24-27.

Nwoba, E. G., Ogbonna, C. N., Ishika, T., & Vadiveloo, A. (2020). Microalgal pigments: a source of natural food colors. In Microalgae Biotechnology for Food, Health and High Value Products (pp. 81-123). Springer, Singapore.

Oliva‐Teles, A. (2012). Nutrition and health of aquaculture fish. Journal of fish diseases, 35(2), 83-108.

Pasupuleti, V. K., & Braun, S. (2010). State of the art manufacturing of protein hydrolysates. Protein Hydrolysates in Biotechnology, 11–32.

Patil, V., Källqvist, T., Olsen, E., Vogt, G., & Gislerød, H. R. (2007). Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International, 15(1), 1-9.

Peter, D., Clive, H. (2006). An overview of the Australian Seafood Industry. Published online. asset000070002007202file1.pdf

Ragap, H.M., Khalil, R.H., Mutawie, H.H. (2012). Immunostimulant effects of dietary Spirulina platensis on tilapia Oreochromis niloticus. Journal of Applied Pharmaceutical Science 2: 26–31.

Ramos, L.R.V.; Pedrosa, V.F.; Mori, A.; Andrade, C.F.F.; Romano, L.A.; Abreu, P.C.; Tesser, M.B. (2017). Exogenous enzyme complex prevents intestinal soybean meal induced enteristis in Mugil liza (Valenncienes, 1836) juveniles. Anais da Academia Brasileira de Ciênicas, v. 89, p. 341-353.

Ramos, L.RV.; Monserrat. J.M.; Romano, L.A.; Sampaio, L.A.; Abreu, P.C.; Tesser, M.B. (2015). Effects of supplementing the diets of Mugil liza Valenciennes, 1836 juveniles with citrus pectin. Journal of Applied Ichthyology, v. 31, 362-369.

Ravi, M., Lata, S., Azharuddin, D.S., Paul, S. (2010). The beneficial effects of Spirulina focusing on its immunomodulatory and antioxidant properties. Nutrition and Dietary Supplements 2: 73–83.

Rosas, V. T., Bessonart, M., Romano, L. A., & Tesser, M. B. (2019a). Fishmeal substitution for Arthrospira platensis in juvenile mullet (Mugil liza) and its effects on growth and non-specific immune parameters. Revista Colombiana de Ciencias Pecuarias, 32(1), 3-13.

Rosas, V. T., Monserrat, J. M., Bessonart, M., Magnone, L., Romano, L. A., & Tesser, M. B. (2019b). Fish oil and meal replacement in mullet (Mugil liza) diet with Spirulina (Arthrospira platensis) and linseed oil. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 218, 46-54.

Rosas, V. T., Monserrat, J. M., Bessonart, M., Magnone, L., Romano, L. A., & Tesser, M. B. (2019c). Comparison of β-carotene and Spirulina (Arthrospira platensis) in mullet (Mugil liza) diets and effects on antioxidant performance and fillet colouration. Journal of Applied Phycology, 31(4), 2391-2399.

Rosas, V. T., Poersch, L. H., Romano, L. A., & Tesser, M. B. (2019d). Feasibility of the use of Spirulina in aquaculture diets. Reviews in Aquaculture, 11(4), 1367-1378.

Schmitz, M. J., Colombo, G. M., dos Santos Simião, C., Ortiz, C. R., Costa, L. D. F., da Silva, T. V. N., Monserrat, J. M. (2020). Modulation of nodularin toxicity in shrimp Litopenaeus vannamei (BOONE, 1931) fed with dietary açai (Euterpe oleracea) inclusion. Fish & Shellfish Immunology, 103, 464-471.

Silva, S. M., Ramos, P. B., Buitrago, J. R., da Silva, T. V., Simião, C. S., Colombo, G. M., Monserrat, J. M. (2020). Zootechnical performance, biochemical response, and chromaticity in Pacific white shrimp (Litopenaeus vannamei) (Boone, 1931) after the inclusion of lyophilized açaí (Euterpe oleracea) in the diet. Aquaculture International, 28(4), 1563-1577.

Simião, C.S.; Ramos, L.V.R.; Mori, A.; Romano, L.A.; Monserrat, J.M.; Tesser, M.B. (2018). Use of exogenous enzymes in diets for juvenile pompano Trachinotus marginatus: growth and liver and intestine morphophysiology. Boletim do Instituto de Pesca, v. 44, e326. Doi 10.20590/1678-2305.2018.44.4.326.

Souza, D. M. ; Kutter, M. T. ; Furtado, P.S. ; Romano, L.A. ; Wasielesky, W.J.; Monserrat, J.M.; Garcia, L.O. (2019). Growth, antioxidant system, and immunological status of shrimp in bioflocs and clear water culture systems. Pesquisa Agropecuária Brasileira, v. 54, p. 1-8, 2019.

Tacon A.G.J., Metian M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture. 285(1-4):146–158. doi:10.1016/j.aquaculture.2008.08.015

Tacon, A.; Metian, M. (2013). Fish Matters: Importance of aquatic foods in human nutrition and global food supply. Reviews in Fisheries Science, v. 2, p. 22-28.

Tacon, A.; Metian, M; McNevin, A.A. (2021). Future Feeds: Suggested Guidelines for Sustainable Development. Reviews in Fisheries Science & Aquaculture

Tacon, A.G.J. (2019). Trends in Global Aquaculture and Aquafeed Production: 2000–2017, Reviews in Fisheries Science & Aquaculture, DOI: 10.1080/23308249.2019.1649634

Teixeira, L. B., De Oliveira, R. F., Furlan Junior, J., Campos, P. D. F., & Germano, V. (2006). Compostagem: lixo orgânico urbano e resíduos da agroindústria do açaí. Belém, PA: Embrapa Amazônia Oriental, 2006.

Troel, M.; Naylor, R.L.; Metian, M.; Beveridge, M;, Tyedmers, P.H.; Folke, C.; Arrow, K.J.; Barret, S., Crépin S.A.; Erlich, P.R.; Gren A.; Kautsky, N.; Levin, S.A.; Nyborg, K.; Osterblom,H.; Polasky, S.; Scheffer, M.; Walker, B.H.; Xepapadeas, T.; Zeeuw, A. 2014. Does aquaculture add resilience to the global food system? Proc. Natl. Acad. Sci. U. S. A., 111 (37) (2014), pp. 13257-13263, 10.1073/pnas.1404067111

Wasielesky, W., Atwood, H., Stokes, A., Browdy, C.L., (2006). Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture 258, 396–403. doi:10.1016/j.aquaculture.2006.04.030

Yuyama, L. K. O., Aguiar, J. P. L., Silva Filho, D. F., Yuyama, K., Jesus Varejão, M. D., Fávaro, D. I. T., Caruso, M. S. F. (2011). Caracterização físico-química do suco de açaí de Euterpe precatoria Mart. oriundo de diferentes ecossistemas amazônicos. Acta Amazonica, 41, 545-552.

Zamora-Sillero, J., Gharsallaoui, A., & Prentice, C. (2018a). Peptides from fish by-product protein hydrolysates and its functional properties: An overview. Marine Biotechnology, 20(2), 118-130.

Zamora-Sillero, J., Ramos, P., Monserrat, J. M., & Prentice, C. (2018b). Evaluation of the antioxidant activity in vitro and in hippocampal HT-22 cells system of protein hydrolysates of common carp (Cyprinus carpio) by-product. Journal of aquatic food product technology, 27(1), 21-34.

Zamora‐Sillero, J., Tavares Kütter, M., Borges Tesser, M., Monserrat, J. M., & Prentice, C. (2019). Effect of dietary common carp by‐product protein hydrolysates on antioxidant status in different organs of zebrafish (Danio rerio). Aquaculture Nutrition, 25(1), 110-118.

Zhang, J., Sun, Z., Sun, P., Chen, T., & Chen, F. (2014). Microalgal carotenoids: beneficial effects and potential in human health. Food & function, 5(3), 413-425.




Cómo citar

Tesser, M., & Torres Rosas, V. (2022). Uso de Alimentos no Convencionales en Acuicultura: Estudios Realizados en la Universidad Federal de Rio Grande –FURG. Avances En Nutrición Acuicola, 1(1), 415–431. Recuperado a partir de