Valor nutricional de los quistes de Artemia y su uso como fuente de proteína en dietas artificiales para larvas de peces
Palabras clave:
Artemia, nutrición, dietas, pecesResumen
La dependencia en el alimento vivo y la carencia de alimentos artificiales adecuados son los
mayores obstáculos para la expansión de la larvicultura en muchas especies de peces. La baja digestibilidad
y la calidad nutricional de los alimentos artificiales son factores que pueden explicar su fracaso como dietas
iniciales para peces. En este trabajo, se analizan los aspectos fisiólogicos relacionados con la capacidad de
las larvas de peces para la digestión del alimento. Adicionalmente, la calidad de la proteína en quistes
desencapsulados y nauplios de Artemia es evaluada, y la factibilidad de utilizar los quistes como fuente de
proteína en microdietas para peces también es analizada. Para estos estudios se utilizó al bagre africano
Clarias gariepinus como especie experimental. Los resultados indican que las larvas del bagre tienen la
capacidad enzimática para digerir la Artemia. El suministro de enzimas digestivas en el alimento vivo tiene
una contribución pequeña en el total de la capacidad de digestión de las larvas. La proteína en Artemia esta
constituída principalmente por proteínas de pesos moleculares pequeños, las cuales pueden ser mas
fácilmente digeribles en comparación con las proteínas en las dietas artificiales. Se sugiere que la estructura
y el tamaño de las proteínas en el alimento para larvas de peces tiene un papel muy importante en su
digestibilidad. Estudios in vitro de la digestibilidad de la proteína de quistes desencapsulados y nauplios de
Artemia, y de microdietas hechas a base de quistes indican tasas mas altas de digestibilidad para estas dietas
comparadas con los alimentos comerciales. El uso de quistes desencapsulados de Artemia como fuente de
proteína en microdietas mejoró su desempeño como dietas iniciales para larvas de peces
Descargas
Citas
Baragi, V., Lovell, R.T., 1986. Digestive enzyme activities in striped bass from first feeding through larva development.
Trans. Amer. Fish. Soc. 115, 478-484.
Berge, G.M., Storebakken, T., 1996. Fish protein hydrolyzate in starter diets for Atlantic salmon (Salmo salar) fry.
Aquaculture 145, 205-212.
Boye, J.I., Ma, C.-Y., Hardwalkar, V.R., 1997. Thermal denaturation and coagulation of proteins. In: Damodaran, S., Paraf,
A. (Eds.), Food proteins and their applications. Marcel Dekker Inc., New York, pp. 25-56.
Cahu, C.L., Zambonino Infante, J.L., 1994. Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet:
effect on digestive enzymes. Comp. Biochem. Physiol. 109A, 213-222.
Cahu, C.L., Zambonino Infante, J.L., 1995. Maturation of the pancreatic and intestinal digestive functions in sea bass
(Dicentrarchus labrax): effect of weaning with different protein sources. Fish Physiol. Biochem. 14, 431-437.
Cahu, C.L., Zambonino Infante, J.L., Quazuguel, P., Le Gall, M.M., 1999. Protein hydrolysate vs. fish meal in compound
diets for 10-day old sea bass Dicentrarchus labrax larvae. Aquaculture 171, 109-119.
Carvalho, A.P., Escaffre, A.-M., Oliva Teles, A., Bergot, P., 1997. First feeding of common carp larvae on diets with high
levels of protein hydrolisates. Aquacult. Int. 5, 361-367.
Dabrowski, K., Glogowski, J., 1977. Studies on the role of exogenous proteolytic enzymes in digestion processes in fish.
Hydrobiologia 54, 129-134.
Dabrowski, K., Rusiecki, M., 1983. Content of total and free amino acids in zooplanktonic food of fish larvae. Aquaculture
, 31-42.
Dabrowski, K., Poczyczynski, P., 1988. Comparative experiments on starter diets for grass carp and common carp.
Aquaculture 69, 317-332.
Dabrowski, K., Bergot, P., Kaushik, S., 1984. Rearing of coregonid larvae using dry and live food. Preliminary data.
Aquaculture 41, 11-20.
Dabrowski, K., El-Fiky, N., Köck, G., Frigg, M., Wieser, W., 1990a. Requirements and utilization of ascorbic acid and
ascorbic sulfate in juvenile rainbow trout. Aquaculture 91, 317-337.
Dabrowski, K., Lackner, R., Doblander, C., 1990b. Effect of dietary ascorbate on the concentration of tissue ascorbic acid,
dehydroascorbic acid, ascorbic sulfate, and activity of ascorbic sulfate sulfohydrolase in rainbow trout
(Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 47, 1518-1525.
Díaz, M., Moyano, F.J., García-Carreño, F.L., Alarcón, F.J., Sarasquete, M.C., 1997. Substrate-SDS-PAGE determination
of protease activity through larval development in sea bream. Aquacult. Int. 5, 461-471.
Fernández-Díaz, C., Yúfera, M., 1997. Detecting growth in gilthead seabream, Sparus aurata L., larvae fed microcapsules.
Aquaculture 153, 93-102.
Flüchter, J., 1984. Substance essential for metamorphosis of fish larvae extracted from Artemia. Aquaculture 27, 83-85.
Fyhn, H.J., 1989. First feeding of marine fish larvae: Are free amino acids the source of energy? Aquaculture 80, 111-120.
Fyhn, H.J., Finn, R.N., Helland, S., Rønnestad, I., Lømsland, E., 1993. Nutritional value of phyto- and zooplankton as live
food for marine fish larvae. In: Reinertsen, H., Dahle, L.A., Jørgensen, L., Tvinnerheim, K. (Eds.), Fish Farming
Technology, Balkema, Rotterdam, pp. 121-126.
García-Ortega, A., Verreth, J.A.J., Segner, H., Coutteau, P., Huisman, E.A., Sorgeloos, P. 1998. Biochemical and enzymatic
characterization of decapsulated cysts and nauplii of the brine shrimp Artemia at different developmental stages.
Aquaculture 161, 501-514.
García-Ortega, A., Verreth, J., Segner, H. 2000b. Post-prandial protease activity in the digestive tract of African catfish
(Clarias gariepinus) larvae fed decapsulated cysts of Artemia. Fish Physiol. Biochem., 22: 237-244.
García-Ortega, A., Koussoulaki, A., Boer, H., Verreth, J. 2000c. In vitro protein digestibility of Artemia cysts and nauplii,
and of microbound diets for larval fish. Aquacult. Res. 31, 475-478.
García-Ortega, A., Verreth, J., Van Hoornyck, A., Segner, H. 2000a. Heat treatment affects protein quality and protease
activity in decapsulated cysts of Artemia when used as starter food for larvae of African catfish Clarias gariepinus
(Burchell). Aquacult. Nutr. 6, 25-31.
García-Ortega, A., Verreth, J., Vermis, K., Nelis, H.J., Sorgeloos, P., Verstegen, M.W.A. A new method for the
quantification of Artemia consumption in nutrition studies with fish larvae. Sometido (a)
García-Ortega, A., Huisman, E.A., Sorgeloos, P., Verreth, J. Evaluation of protein quality in microbound starter diets for
larvae of African catfish (Clarias gariepinus) made with decapsulated cysts of Artemia and fishmeal as protein
source. Sometido (b).
Govoni, J.J., Boehlert, G.W., Watanabe, Y. 1986. The physiology of digestion in fish larvae. Env. Biol. Fish. 16, 59-77.
Hagiwara, A., Balompapueng, M.D., Munuswammy, N., Hirayama, K., 1997. Mass production and preservation of the
resting eggs of the euryhaline rotifer Brachionus plicatilis and B. rotundiformis. Aquaculture 155, 223-230.
Hjelmeland, K., Pedersen, B.H., Nilssen, E.M., 1988. Trypsin content in intestines of herring larvae, Clupea harengus,
ingesting inert polystyrene spheres or live crustacea prey. Marine Biology 98, 331-335.
Hjelmeland, K., Ugelstad, I., Olsen, Y., 1993. Proteolytic activity and post mortem autolysis in prey for marine fish larvae.
In: Physiological and biochemical aspects of fish development (ed. by Walther, B.T. & Fyhn, H.J.), pp. 229-232.
Univ. of Bergen, Norway.
Hofer, R., Nasir Uddin, A., 1985. Digestive processes during the development of the roach Rutilus rutilus L. J. Fish Biol.
, 683-689.
Hofer, R., Bürkle, O. 1986. Daily food consumption, gut passage rate and protein utilization in whitefish larvae (Coregonus
sp.). Arch. Hydrobiol. Beih. Ergebn. Limnol. 22, 189-196.
Inui, Y., Tagawa, M., Miwa, S., Hirano, T., 1989. Effect of bovine TSH on the tissue thyroxine level and metamorphosis in
premetamorphic flounder larvae. Gen. Comp. Endocrinol. 74, 406-410.
Jones, D.A., Kamarudin, M.S., Le Vay, L., 1993. The potential for replacement of live feeds in larval culture. J. World
Aquacult. Soc. 24, 199-210.
Kawai, S., Ikeda, S., 1973. Studies on digestive enzymes of fishes. III. Development of digestive enzymes of rainbow trout
after hatching and effect of dietary change on activities of digestive enzymes in the juvenile stage. Bull. Jap. Soc.
Sci. Fish. 39, 817-823.
Kolkovski, S., Tandler, A., Kissil, G.W., Gertler, A., 1993. The effect of dietary exogenous digestive enzymes on ingestion,
assimilation, growth and survival of gilthead seabream (Sparus aurata, Sparidae, Linnaeus) larvae. Fish Physiol.
Biochem. 12, 203-209.
Kurokawa, T., Shiraishi, M., Suzuki, T., 1998. Quantification of exogenous protease derived from zooplankton in the
intestine of Japanese sardine (Sardinops melanotictus) larvae. Aquaculture 161, 491-499.
Lam, T.J., 1980. Throxine enhances larval development and survival in Sarotherodon (Tilapia) mossambicus, Ruppel.
Aquaculture 21, 287-291.
Lauff, M., Hofer, R., 1984. Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture
, 335-346.
Léger, P., Bengtson, D.A., Simpson, K.L., Sorgeloos, P., 1986. The use and nutritional value of Artemia as food source.
Oceanogr. Mar. Biol. Ann. Rev. 24, 521-623.
Marmulla, G., Rösch, R. 1990. Maximum daily ration of juvenile fish fed on living natural zooplankton. J. Fish Biol. 36,
-801.
Moyano, F.J., Díaz, M., Alarcón, F.J., Sarasquete, M.C., 1996. Characterization of digestive enzymes activity during larval
development of gilthead seabream (Sparus aurata). Fish Physiol. Biochem. 15, 121-130.
Munilla-Moran, R., Stark, J.R., Barbour, A., 1990. The role of exogenous enzymes in digestion in cultured turbot larvae
(Scophthalmus maximus L.). Aquaculture 88, 337-350.
Nolting, M., Ueberschär, B., Rosenthal, H., 1999. Trypsin activity and physiological aspects in larval rearing of European
sea bass (Dicentrarchus labrax) using live prey and compound diets. J. Appl. Ichthyol. 15, 138-142.
Pector, R., Tackaert, W., Abelin, P., Ollevier, F., Sorgeloos, P., 1994. A comparative study on the use of different
preparations of decapsulated Artemia cysts as food for rearing African catfish (Clarias gariepinus) larvae. J. World
Aquacult. Soc. 25, 366-370.
Pedersen, B.H., 1984. The intestinal evacuation rates of larval herring (Clupea harengus L.) predating on wild plankton.
Dana 3, 21-30.
Pedersen, B.H., Nilssen, E.M., Hjelmeland, K., 1987. Variations in the content of trypsin and trypsinogen in larval herring
(Clupea harengus) digesting copepod nauplii. Marine Biology 94, 171-181.
Pedersen, B.H., Hjelmeland, K., 1988. Fate of trypsin and assimilation efficiency in larval herring (Clupea harengus)
following digestion of copepods. Marine Biology 97, 467-476.
Person-Le Ruyet, J., Alexandre, J.C., Thébaud, L., Mugnier, C., 1993. Marine fish larvae feeding: formulated diets or live
prey? J. World Aquacult. Soc. 24, 211-224.
Rainuzzo, J.R., Reitan, K.I., Olsen, Y., 1997. The significance of lipids at early stages of marine fish: a review. Aquaculture
, 103-115.
Rønnestad, I., Fyhn, H.J., 1993. Metabolic aspects of free amino acids in developing marine fish eggs and larvae. Rev. Fish.
Sci. 1, 239-259.
Rønnestad, I., Thorsen, A., Finn, R.N., 1999. Fish larval nutrition: a review of recent advances in the roles of amino acids.
Aquaculture 177, 201-216.
Rösch, R., Appelbaum, S., 1985. Experiments on the suitability of dry food for larvae of Coregonus lavaretus L.
Aquaculture 48. 291-302.
Rosenlund, G., Stoss, J., Talbot, C., 1997. Co-feeding marine fish larvae with inert and live diets. Aquaculture 155, 183-
Sargent, J.R., McEvoy, L.A., Bell, J.G., 1997. Requirements, presentation and sources of polyunsaturated fatty acids in
marine fish larval feeds. Aquaculture 155, 117-127.
Segner, H., Rösch, R., Schmidt, H., von Poeppinghausen, K.J., 1989. Digestive enzymes in larval Coregonus lavaretus L. J.
Fish Biol. 35: 249-263.
Segner, H., Storch, V., Reinecke, M., Kloas, W., Hanke, W., 1994. The development of functional digestive and metabolic
organs in turbot Scophthalmus maximus. Marine Biology 119, 471-486.
Sorgeloos, P., Lavens, P., Léger, P., Tackaert, W., Versichele, D., 1986. Manual for the culture and use of brine shrimp
Artemia in Aquaculture. Faculty of Agriculture, State University of Ghent, Belgium. pp 319.
Ueberschär, B., 1993. Measurement of proteolytic enzyme activity: significance and application in larval fish research. In:
Physiological and Biochemical Aspects of Fish Development. pp. 233-237. Edited by Walther, B.T. and Fyhn, H.J.
University of Bergen, Norway.
Uys, W., Hecht, T., 1985. Evaluation and preparation of an optimal dry feed for the primary nursing of Clarias gariepinus
larvae (Pisces: Clariidae). Aquaculture 47, 173-183.
Verreth, J., Den Bieman, H., 1987. Quantitative feed requirements of African catfish (Clarias gariepinus Burchell) larvae
fed with decapsulated cysts of Artemia. I. The effect of temperature and feeding level. Aquaculture 63, 251-267.
Verreth, J., Storch, V., Segner, H., 1987. A comparative study on the nutritional quality of decapsulated Artemia cysts,
micro-encapsulated egg diets and enriched dry feeds for Clarias gariepinus (Burchell) larvae. Aquaculture 63, 269-
Verreth, J., Torreele, E., Spazier, E., Van der Sluiszen, A., Rombout, J., Booms, R., Segner, H., 1992. The development of a
functional digestive system in the African catfish Clarias gariepinus (Burchell). J. World Aquacult. Soc. 23, 286-
Walford, J., Lam, T.J., 1993. Development of digestive tract and proteolytic enzymes activity in seabass (Lates
calcarifer) larvae and juveniles. Aquaculture 109, 187-205.
Watanabe, T., Kitajima, C., Fujita, S., 1983. Nutritional value of live organisms used in Japan for mass propagation of fish:
a review. Aquaculture 34, 115-143.
Watanabe, T., Kiron, V., 1994. Prospects in larval fish dietetics. Aquaculture 124, 223-251.
de Wet, P.J., 1983. Effect of processing on nutritive value of feeds: Protein. In: Handbook of Nutritive Value of Processed
Food, (Rechcigl, M. ed.), pp. 321-341. CRC Press Inc. Boca Raton, Florida.
Zambonino Infante, J.L., Cahu, C.L., 1994. Development and response to a diet change of some digestive enzymes in sea
bass (Dicentrarchus labrax) larvae. Fish Physiol. Biochem. 12, 399-408.
Zambonino Infante, J.L., Cahu, C.L., Peres, A., 1997. Partial substitution of di- and tripeptides for native proteins in sea
bass diet improves Dicentrarchus labrax larval development. J. Nutr. 127, 608-614.