El Papel de los Minerales Traza en la Salud de los Peces
Abstract
La investigación sobre el papel de los elementos traza en la salud de los peces se limita al
hierro, zinc y selenio. Los niveles dietéticos óptimos de hierro reportados para diferentes
especies van de 30 mg/kg a 175 mg/kg de la dieta. La deficiencia férrica causa anemia
hipocrómica microcitica, anorexia, crecimiento pobre, reducción del contenido ferrico en el
suero, saturación de transferrina, y aumenta la capacidad total de unión al hierro. Los datos
actuales sugieren que el título del anticuerpo y engullamiento de bacterias por macrófago no
estuvieron deprimidos en el bagre de canal (chanel catfish) deficiente de hierro. La quimiotaxis
del macrófago en respuesta al exoantigeno de Edwardsiella ictaluri fue bajo para el pez
alimentado con la dieta deficiente de hierro, pero este fenómeno fue invertido cuando el bagre
deficiente de hierro se alimentó con la dieta con alto nivel de hierro durante 4 semanas. La
deficiencia o exceso férrico pueden aumentar la susceptibilidad de los peces a las infecciones.
Los requisitos dietéticos de zinc para los peces varían de 15 a 30 mg/kg de dieta. El requisito
aumenta grandemente si el fitato está presente en la dieta. Algunas de las señales de
deficiencia de zinc reportadas fueron crecimiento deprimido, anorexia, alta mortalidad,
cataratas, enanisno y concentración reducida de zinc en el tejido y reducida actividad de
fosfatasa alcalina en el suero. Las evidencias del efecto de zinc dietético en funciones inmunes
y la resistencia a las enfermedades son conflictivas. Los requisitos de selenio en peces,
determinada usando selenita de sodio, van de 0.18 a 0.38 mg/kg. Los signos de deficiencia
observados son decremento en el crecimiento, sobrevivencia, hematocrito y actividad de
glutation peroxidasa. Las funciones inmunes no-específicas de macrófagos fueron
influenciadas por las fuentes y niveles de selenio en las dietas. También parece importante que
el selenio en las dietas, mejora la inmunidad específica y resistencia a las enfermedades en
peces y que las fuentes orgánicas de selenio son más potentes que las formas inorgánicas.
Así, debido a la ausencia de evidencia clara de la influencia de minerales traza en la inmunidad
y resistencia a enfermedades en los peces, se sugiere que estos sean incluidos en la dieta a
los niveles requeridos para el crecimiento.
Downloads
References
Andersen, F., Maage, A., Julshamn, K., 1996. An estimation of dietary iron requirement of Atlantic
salmon, Salmo salar L., parr. Aquacult. Nutr. 2, 41-47. Ashmead, H.D., 1992. The roles of amino
acid chelates in animal nutrition. Noyes Publication, New Jersey.
Ashmead, H.D., and Zunino, H., 1992. Factors which affect the intestinal absorption of minerals. In: H.D.
Ashmead (Ed.), the roles of amino acid chelates in animal nutrition. Noyes Publications, New
Jersey, pp. 221-46.
Beisel, W.R., 1982. Single nutrient and immunity. Am. J. Clin. Nutr. 35, 417-468.
Bell, G.R., Higgs, D.A., Traxler, G.S., 1984. The effect of dietary ascorbate, zinc, and manganese on the
development of experimentally induced bacterial kidney disease in sockeye salmon
(Oncorhynchus nerka). Aquaculture 36, 293-311.
Bell, J.G., Pirie, B.J.S., Adron, J.W., Cowey, C.B., 1986. Some effects of selenium deficiency on
glutathione peroxidase (EC 1.11.1.9) activity and tissue pathology in rainbow trout, (salmo
gairdneri). British J. nutr. 55, 305-311.
Bell, J.G., Cowey, C.B.,, Adron, J.W., Pirie, B.J.S., 1987. Some effects of selenium deficiency on enzyme
activities and indices of tissue peroxidation in atlantic salmon parr, (Salmo salar). Aquaculture 65,
-54.
Bell, J.G., Cowey,, C.B., 1989. Digestibility and bioavailability of dietary selenium from fishmeal, selenite,
selenomethionine and selenocystine in atlantic salmon, (Salmo salar). Aquaculture 81, 61-68.
Berger, L.L., 1996. Trace minerals: Key to immunity. Salt and Trace Minerals 28, 1-4.
Bhaskaram, P., 1988. Immunology of iron-deficient subjects. In: R.K. Chandra (Ed.), Nutrition and
Immunology. Alan R. Liss Inc., New York, pp. 149-168.
Combs, G.F. and Combs, S.B., 1986. The role of selenium in nutrition. Academic Press, NY.
Davis, D.A., Gatlin, D.M., III, 1996. Dietary mineral requirements of fish and marine crustaceans. Reviews
in Fisheries Science, 4, 75-99.
Evans, D.H., 1993. The physiology of fishes. CRC press, Boca Raton, FL.
Gatlin, D.M., III., Wilson, R.P., 1983. Dietary zinc requirement of fingerling channel catfish. J. Nutr. 113,
-635.
Gatlin, D.M., III., Wilson, R.P., 1984a. Dietary selenium requirement of fingerling channel catfish. J. Nutr.
, 627-633.
Gatlin, D.M., III., Wilson, R.P., 1984b. Zinc supplementation of practical channel catfish diets. Aquaculture
, 31-36.
Gatlin, D.M., III, Wilson, R.P., 1986. Characterization of iron deficiency and the dietary iron requirement of
fingerling channel catfish. Aquaculture 52, 191-198.
Gatlin, D.M.,III, O'Connell, J.P., Scarpa, J., 1991. Dietary zinc requirement of red drum, Sciaenops
ocellatnus. Aquaculture 92, 259-265.
Hardy, R.W., Shearer, K.D., 1992. The use of zinc amino acid chelates in high calcium and phosphorus
diets of rainbow trout. In: H.D. Ashmead (Ed), The Roles of Amino Acid Chelates in Animal
Nutrition. Noyes Publication, NJ, pp. 424-439.
Harper, H.A., 1973. Review of Physilogical Chemistry, 15th Edition. Lange Medical Publicatioms Los Altos,
CA.
Hilton, J.W., Hodson, P.V., Slinger, S.J., 1980. The requirement and toxicity of selenium in rainbow trout
(Salmo gairdneri). J. Nutr 110, 2527-2535.
Hodson, P.V. and Hilton, S.J., 1983. The nutritional requirements and toxicity to fish of dietary and
waterborne selenium. Environ. Biogeochem. Ecol. 35, 335-340.
Ikeda, Y., Ozaki, H., Uematsu, K., 1973. Effect of enriched diet with iron in culture of yellowtail. J. Tokyo
Univ. Fish. 59, 91-99.
Karl, L., Chvapil, M., Zukoski, C.F., 1973. Effect of zinc on the viability and phagocytic capacity of
peritoneal macrophages. Proc. Soc. Exper. Bio. Med. 142, 1123-1127.
Kawatsu, H., 1972. Studies of anemia in fish. 5. Dietary iron deficient anemia in brook trout, Salvelinus
fontinalis. Bull. Freshwater Fish. Res Lab, 22, 59-67.
Ketola, G.H., 1979. Influence of dietary zinc on cataracts in rainbow trout (Salmo gairdneri). J. Nutr 109,
-969.
Lall, S.P., Hines, J.A., 1987. Iron and copper requirement of atlantic salmon (Salmo salar) grown in sea
water. Paper presented at the International Symposium on Feeding and Nutrition of Fish, Bergen,
Norway, August 23-27, 1987.
Lall, S.P., 1989. The minerals. In: J.E. Halver (Ed.), Fish Nutrition, Second Edition. Academic Press, NY,
pp. 219-257.
Li, M.H., Robinson, E.W., 1996. Comparison of chelated zinc and zinc sulfate as zinc sources for growth
and bone mineralization of channel catfish (Ictalurus punctatus) fed practical diets. Aquaculture
, 237-243.
Lim, C., Sealey, W.M., Klesius, P.H., 1996a. Iron methionine and iron sulfate as sources of dietary iron for
channel catfish Ictalurus punctatus. J. World Aquacult. Soc. 27, 290-296.
Lim, C., Klesius, P.H., Duncan, P.L., 1996b. Immune response and resistance to Edwardsiella ictaluri
challenge when fed various dietary levels of zinc methionine and zinc sulfate. J. Aquat. Animal
Health 8, 302-307.
Lim, C., Klesius, P.H., 1997. Responses of channel catfish (Ictalurus punctatus) fed iron-deficient and
replete diets to Edwardsiella ictaluri challenge. Aquaculture 157, 83-93.
Lorentzen, A.M., Julshamn, K., 1994. Effects of dietary selenite or selenomethionine on tissue selenium
levels of atlantic salmon (Salmo salar). Aquaculture 121, 359-367.
Lovell, T., 1989. Nutrition and the feeding of fish. Van Nostrand Reinhold, NY.
McClain, W.R., Gatlin, D.M.III., 1988. Dietary zinc requirement of Oreochromis aureus and effects of
dietary calcium and phytate on zinc bioavailability. J. World Aquacult. Soc. 19, 103-108.
Nakai, T., Kanno,T., Cruz, E.R., Muroga,K., 1987. The effects of iron compounds on the virulence of
Vibrio anguillarum in Japanese eels and ayu. Fish Pathology, 22, 185-189.
Nose, T., Arai, S., 1976. Recent advances on studies on mineral nutrition of fish in Japan. In: V.R. Pillay
and W.A. Dill (Eds.), Advances in Aquaculture. Fishing News, Farnam, England, pp. 584-590.
NRC (National Research Council), 1980. Mineral tolerance of domestic animals. National Academy Press.
Washington, D.C.
NRC (National Research Council), 1993. Nutrient Requirements of Fish. National Academy Press.
Washington, DC.
Ogino, C., Yang, G.Y., 1978. Requirement of rainbow trout for dietary zinc. Bull. Jpn. Soc. Sci. Fish., 44,
-1018.
Ogino, C., Yang, G.Y., 1979. Requirement of carp for dietary zinc. Bull. Jpn. Soc. Sci. Fish., 45, 967-969.
Paripatananont, T., Lovell, R.T., 1995a. Chelated zinc reduces the dietary zinc requirement of channel
catfish, Ictalurus punctatus. Aquaculture 133, 73-82.
Paripatananont, T., Lovell, R.T., 1995b. Responses of channel catfish fed organic and inorganic sources
of zinc to Edwardsiella ictaluri challenge. J. Aquatic Animal Health 7, 147-154.
Paripatananont, T., Lovell, R.T., 1997. Comparative net absorption of chelated and inorganic trace
minerals in channel catfish Ictalurus Punctatus diets. J. World Aquacult. Soc. 28, 62-67.
Poston, H.A., Combs, G.F.Jr., Leibovitz, L., 1976. Vitamin E and selenium interrelation in the diet of
Atlantic salmon (salmo salar): gross, histological and biochemical deficiency signs. J. Nutr. 106,
-904.
Ravndal, J, Lovold, T, Bentsen, H.B., Roed, K.H., Gjedrem, T. Rorvik, K.A., 1994. Serum iron levels in
farmed Atlantic salmon: family variation and associations with disease resistance. Aquaculture
, 37-45.
Roeder, M., Roeder, R., 1966. Effect of iron on the growth rate of fishes. J. Nutr. 90, 86-90.
Rotruck, J.T., Pope, A.L., Ganther, H.E, Swanson, A.B., Hafeman, D.G., Hoekstra, W.G., 1973.
Selenium: Biochemical role as a component of glutathione peroxidase. Science 179, 588-590.
Sakamoto, S., Yone, Y., 1978a. Requirement of red sea bream for dietary iron II. Bull. Jpn. Soc. Sci. Fish.
, 223-225.
Sakamoto, S., Yone, Y., 1978b. Iron deficiency symptoms of carp. Bull. Jpn. Soc. Sci. Fish. 44, 1157-1160.
Sakamoto, S., Yone, Y., 1979. Availabilities of three iron compounds as dietary iron sources for red sea
bream. Bull. Jpn. Soc. Sci. Fish. 45, 231-235.
Satoh, S., Takeuchi,T., Watanabe, T., 1987. Availability to rainbow trout of zinc in white fish meal and of
various zinc compounds. Nippon Suisan Gakkaishi 53, 595-599.
Scarpa, J., Gatlin, D.M., III., 1992. Dietary zinc requirements of channel catfish, Ictalurus punctatus, swimup
fry in soft and hard water. Aquaculture 106, 311-322.
Scarpa, J., Gatlin, D.M., III., 1992. Effects of dietary zinc and calcium on select immune functions of
channel catfish. J. Aquatic Animal Health 4, 24-31.
Sealey, W.M., Lim, C., Klesius, P.H., 1997. Influence of dietary level of iron from iron methionine and iron
sulfate on immune response and resistance of channel catfish to Edwarsiella ictaluri. J. World
Aquacult. Soc. 28, 142-149.
Sherman, A.R., 1992. Zinc, copper and iron nutriture and immunity. J. Nutr. 122, 604-609.
Spinelli, J., Houle, C.R., Wekell, J.C., 1983. The effects of phytates on the growth of rainbow trout (Salmo
gairdneri) fed pure diets containing varying quantities of calcium and magnesium. Aquaculture,
, 71-83.
Thorarinsson, R., Landolt, M.L, Elliott, D.G., Pascho, R.J and Hardy, R.W., 1994. Effect of dietary
vitamin E and selenium on growth, survival and the prevalence of Renibacterium salmoninarum
infection in chinook salmon (Oncorhynchus tshawytscha). Aquaculture, 121, 343-358.
Wang, C., Lovell, R.T., 1997. Organic selenium sources, selenomethionine and selenoyeast, have higher
bioavailabililty than an inorganic selenium source, sodium selenite, in diets for channel catfish
(Ictalurus punctatus). Aquaculture 152, 223-234.
Wang, C., Lovell, R.T., Klesius, P.H., 1997. Response to Edwardsiella ictaluri challenge by channel catfish
fed organic and inorganic sources of selenium. J. Aquat. Animal Health 9, 172-179.
Weinberg, E.D., 1974. Iron and susceptibility to infectious disease. Science 184, 952-958.
Wise, D.J., Tomasso, J.R., Gatlin, D.M., Bai, S.C and Blazer, V.S., 1993. Effects of dietary selenium and
vitamin E on red blood cell peroxidation, glutathione peroxidase activity and macrophage
superoxide anion production in channel catfish. J. Aquat. Animal Health, 5, 177-182.