Bioquímica Digestiva en Especies Acuicultivadas: Aplicaciones en Nutrición
Abstract
El estudio de las enzimas digestivas, sus características, funcionalidad y adaptaciones al régimen alimenticio,
conforman uno de los campos de investigación más amplios e interesantes en la nutrición de especies acuicultivadas.
Un gran número de investigaciones han abordado aspectos que van desde la descripción de los parámetros
funcionales de las principales enzimas hasta la forma en que éstas pueden ser utilizadas para modelizar la digestión
en una especie concreta o su papel como indicadores de la condición nutricional durante la etapa larvaria. El presente
trabajo pretende llevar a cabo un repaso somero a todos estos aspectos, planteando además las perspectivas de
futuras investigaciones en bioquímica de la digestión.
Downloads
References
Alarcon, F.J., Díaz, M., Moyano, F.J. & Abellan, E., 1998. Characterization and functional properties of digestive
proteases in two sparids; gilthead seabream Sparus aurata, L. and common dentex Dentex dentex . Fish
Physiol. Biochem. 19, 257–267.
Alarcón, F.J., Martínez, I.; Díaz, M., & Moyano, F.J. 2001. Characterization of digestive carbohydrase activity in the
gilthead seabream (Sparus aurata). Hydrobiologia 445:199–204
Alarcón, F.J.; Moyano, F.J. & Díaz, M. 1999. Effect of inhibitors present on protein sources on digestive porteases of
juvenile sea bream (Sparus aurata). Aquat Living Resources 12:233-238
Alarcón, F.J.; Moyano, F.J. & Díaz, M. 2002. Evaluation of different protein sources for aquafeeds by an optimised
pH-stat system. J. Sci Food Agric 82: 697-704
Applebaum, S.L.; Holt, A.J. 2003. The digestive protease, chymotrypsin, as an indicator of nutritional condition in
larval red drum (Sciaenops ocellatus). Mar. Biol.142:1159–67
Baglole, C. J., Goff, G. P. & Wright, G. M. 1988. Distribution and ontogeny of digestive enzymes in larval
yellowtail and winter flounder. Journal of Fish Biology 53, 767–784.
Beirao, L. H., Mckintoch, M. I., Evanilda, T. and César. 2001. Purification and characterization of trypsin-like
enyme from the pyloric caeca of cod (Gadus morhua) II. Brazilian Arch. Biol. Techn. 44 1: 33-40.
Belitz, H.-D.; Weder, J. K. P. Protein inhibitors of hydrolases in plants foodstuffs. Food Rev. Int. 1990, 6, 151-211.
Bezerra, R.S, Lins E.J., Alencar, R.B., Paiva, P.M.; Chaves, M.E., Coelho, L.C. & Carvalho, L.B. 2005. Alkaline
proteinase from intestine of Nile tilapia (Oreochromis niloticus). Process Biochemistry 40:1829–1834
C. Cahu,, I. Rønnestad , V. Grangiera, & J.L. Zambonino Infante. 2004.Expression and activities of pancreatic
enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolyzed dietary
protein; involvement of cholecystokinin. Aquaculture 238:295–308
Cahu, C.L. & Zambonino Infante, J. L. 1995. Maturation of the pancreatic and intestinal digestive functions in sea
bass (Dicentrarchus labrax): effect of weaning with different protein sources. Fish Physiology and
Biochemistry 14, 431–437.
Cara, J. B, Moyano,; F.J.; Zambonino, J.L. & Fauvel, C. Trypsin and chymotrypsin as indicators of nutritional status
of post-weaned sea bass larvae. J. Fish Biology (in press)
Chiu, Y.N., Benitez, L.V., 1981. Studies on the carbohydrases in the digestive tract of milkfish Chanos chanos. Mar.
Biol. 61, 247–254.
Cho, C.Y. & Slinger, S.J. 1979.Apparent digestibility measurement in feedstufs for rainbow trout. In: Finfish
Nutrition and Fishfeed Technology (Halver, J.E. & Tiews, K. eds), Vol. 2, pp. 239-247. Heenemann-
Verlagsgesellschaft, Berlin.
Choubert, G., de la Noue, J. & Luquet, P. 1982 Digestibility in Fish: Improved device for the automatic collection of
feces. Aquaculture, 29, 185-189.
Clark, J., Murray, K.R. and Stark, J.R. 1986. Protease development in dover sole (Solea solea) Aquaculture 53: 253–
Cohen, T., Gertler, A., Birk, Y., 1981. Pancreatic proteolytic enzymes from carp (Cyprinus carpio): I. Purification
and physical properties of trypsin, chymotrypsin, elastase and carboxypeptidase. Comp. Biochem. Physiol.
B, 639– 646.
Cuvier-Peres A., Jourdan, S.; Fontaine, P. & Kestemont, P. 2001. Effects of light intensity on animal husbandry and
digestive enzyme activities in sea bass Dicentrachus labrax post-larvae. Aquaculture 202:317–328
Deguara, S., Jauncey, K. and Agius, C. 2003. Enzyme activities and pH variations in the digestive tract of gilthead
sea bream. Journal of Fish Biology 62: 1033–1043.
Díaz, M.; Sánchez, V.; Vila, E.; Arizcun, M. y Moyano, F.J. 2005. Variaciones cuali- y cuantitativas en las proteasas
digestivas del dentón derivadas del incremento del ayuno en el historial de alimentación. Actas X Congreso
Nac. Acuicultura. Valencia. España
Dimes, L.E., Haard, N.F., Dong, F.M., 1994. Estimation of protein digestibility. II. In vitro assay of protein in
salmonid feeds. Comp. Biochem. Physiol. 108 A, 363-370.
El-Sayed, A.F.M, I. Martínez & Moyano, F.J. 2000. Assesement of the effect of plant inhibitors on digestive
proteases of Nile tilapia using in vitro assays. Aquaculture International: 1-13
Einarsson S, Spencer-Davies P, Talbot. C.1996. The effect of feeding on the secretion of pepsin, trypsin and
chymotrypsin in the Atlantic salmon, Salmo salar. Fish Physiol. Biochem.15:439-446
Einarsson S, Spencer-Davies P, Talbot, C.1997. Effect of exogenous cholecystokinin on the discharge of the
gallbladder and the secretion of trypsin and chymotrypsin from the pancreas of the Atlantic salmon, Salmo
salar L. Comp Biochem Physiol C 117:63–67
Fernandez, I.; Moyano, F.J.; Díaz, M., & Martínez, T. 2001. Characterization of a-amylase activity in five species of
Mediterranean sparid fishes (Sparidae, Teleostei).Journal of Experimental Marine Biology and Ecology
: 1–12
Ferron A, Leggett W.C. 1994. An appraisal of condition measures for marine fish larvae. Adv. Mar. Biol. 30:217-303
Furné, M. M.C. Hidalgo, A. López, M. García-Gallego, A.E. Morales, A. Domezain, J. Domezain &, A. Sanz. 2005.
Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus
mykiss. A comparative study. Aquaculture 250 391– 398
Gawlicka, A., Teh, S. J., Hung, S. S. O., Hinton, D. E. & De La Noue, J. 1995. Histological and histochemical
changes in the digestive tract of white sturgeon larvae during ontogeny. Fish Physiology and Biochemistry
, 357–371.
Haard N. F. 1992. A review of proteolytic enzymes from marine organisms and their application in the food industry.
J Aquatic Food Product Technol 1992;1:17–35.
Hoehne-Reitan, K., Kjorsvik, E. & Retan, K. I. 2001. Bile salt-dependent lipase in larval turbot, as influenced by
density and lipid content of fed prey. Journal of Fish Biology 58, 746–754.
Izquierdo, M.S. & Henderson, R.J. 1998. The determination of lipase and phospholipase activities in gut contents of
turbot (Scophthalmus maximus) by fluorescence-based assays. Fish Physiol. Biochem. 19: 153–162.
Kitamikado, M. and Tachino, S. 1960. Studies on the digestive enzymes of rainbow trout proteases. Bull. Jap. Soc.
Sci. Fish. 26: 685–690.
Kolkowski, S., Tandler, A., Kissil, G. W. & Gertler, A. 1993. The effect of dietary exogenous enzymes on ingestion,
assimilation, growth and survival of gilthead seabream (Sparus aurata) larvae. Fish Physiology and
Biochemistry 12, 203–209
Koven; W. C.R. Rojas-García, R.N. Finn, A. Tandler & I. Rønnestad. 2002. Stimulatory effect of ingested protein
and/or free amino acids on the secretion of the gastro-endocrine hormone cholecystokinin and on tryptic
activity, in early-feeding herring larvae, Clupea harengus Marine Biology 140: 1241–1247
Krogdahl A, Holm H. 1983. Pancreatic proteinases from man, trout, rat, pig, cow, chicken, mink and fox. Enzyme
activities and inhibition by soybean and lima bean proteinase inhibitors. Comp Biochem Physiol 74B:403–9.
Kurtovic, I.; Marshall, S.N.; Simpson B.K. 2006.Isolation and characterization of a trypsin fraction from the pyloric
ceca of chinook salmon (Oncorhynchus tshawytscha).Comp. Biochem. Physiol. B 143:432–440.
Lemieux H., Blier P., Dutil J.D. 1999. Do digestive enzymes set a physiological limit on growth rate and food
conversion efficiency in the Atlantic cod (Gadus morhua)? Fish Physiol. and Biochem. 20:293-303.
Lin Yan & Xiao Qiu-Zhou. 2006. Dietary glutamine supplementation improves structure and function of intestine of
juvenile Jian carp (Cyprinus carpio var. Jian) Aquaculture 256: 389–394.
Male, R., Lorens, J.B., Smalas, A. & Torrissen, K.A. 1995. Molecular cloning and characterization of anionic and
cationic variants of trypsin from Atlantic salmon. Eur. J. Biochem. 232, 677-685.
Maragoudaki D, Paspatis M, Kentouri, M. 2001.Growth and feeding responses of juvenile red porgy to restrictive
self-feeding regimes. Aquaculture International 9:153-70.
Martínez, I.; Moyano, F.J.; Fernández-Díaz, C. & Yúfera, M.1999. Digestive enzyme activity during larval
development of the Senegal sole (Solea senegalensis) Fish Physiology and Biochemistry 21: 317–323
Moyano, F. J., Díaz, M., Alarcón, F. J. & Sarasquete, M. C. 1996. Characterization of digestive enzyme activity
during larval development of gilthead seabream (Sparus aurata). Fish Physiology and Biochemistry 15,
–130.
Moyano, F.J.; Martínez, I.; Díaz, M. & Alarcón, F.J. 1999. Inhibition of digestive proteases by vegetable meals in
three fish species; seabream (Sparus aurata), tilapia (Oreochromis niloticus) and African sole (Solea
senegalensis). Comp. Biochem. Physiol B 122 ; 327–332.
Munilla-Morán, R. and Saborido-Rey, F. 1996. Digestive enzymes in marine species. I. Proteinase activities in gut
from redfish (Sebastes mentella), seabream (Sparus aurata) and turbot (Scophthalmus maximus) Comp.
Biochem. Physiol. 113B: 818–826.
Munilla-Morán, R., Saborido-Rey, F., 1996. Digestive enzymes in marine species. II. Amylase activities in gut from
seabream (Sparus aurata), turbot (Scophthalmus maximus) and redfish (Sebastes mentella). Comp.
Biochem. Physiol. 113B, 827– 834.
Olsson, C.; Aldman, G,; Larsson, A. & Holmgren, S. 1999. Cholecystokinin affects gastric emptying and stomach
motility in the rainbow trout Oncorhynchus mykiss The Journal of Experimental Biology 202, 161–170.
Pedersen, B.H, Nilssen, E.M, Hjelmeland, K.1987.Variations in the content of trypsin and trypsinogen in larval
herring (Clupea harengus) digesting copepod nauplii. Mar. Biol. 1987; 94:171-81.
Pope, K.L, Kruse C.G.2001. Assessment of Fish Condition Data. En: Guy C, Brown M, ed. Statistical Analyses of
Freshwater Fisheries Data. American Fisheries Society Publication.
Roach, J.C. 2002.A Clade of Trypsins Found in Cold-Adapted Fish. Proteins: Structure, Function, and Genetics
:31–44.
Rojas-García, C. R. Rønnestad, I., 2002. Cholecystokinin and tryptic activity in the gut of developing Atlantic
halibut (Hippoglossus hippoglossus): evidence for participation in the regulation of protein digestion. J.
Fish Biol.61, 973–986.
Rønnestad, I., Conceição, L. E. C., Aragão, C., Dinis, M. T., 2001. Assimilation and catabolism of dispensable and
indispensable free amino acids in post-larval Senegal sole (Solea senegalensis). Comp. Biochem. Physiol.C.
: 461-466.
Rungruangsak-Torrissen, K., Pringle, G.M.,Moss, R. and Houlihan, D.F. 1998. Effects of varying rearing
temperatures on expression of different trypsin isozymes, feed conversion efficiency and growth in Atlantic
salmon (Salmo salar L.). Fish Physiol. Biochem. 19: 247–255.
Rungruangsak-Torrissen, K., Rustad, A., Sunde, J., Eiane, S.A., Jensen, H.B., Opstvedt, J., Nygård, E., Samuelsen,
T.A., Mundheim, H., Luzzana, U. and Venturini, G. 2002. In vitro digestibility based on fish crude enzyme
extract for prediction of feed quality in growth trial. J. Sci. Food Agric. 82: 644–654.
Sánchez-Muros, M.J, Corchete, V., Suárez, M.D., Cardenote, G, Gómez-Milán, E., & De la Higuera M. 2003. Effect
of feeding method and protein source on Sparus aurata feeding patterns. Aquaculture 224:89-103.
Segner,H., Storch, V., Reinecke, M., Kloas, W. & Hanke, W.1994. The development of functional digestive and
metabolic organs in turbot, Scophthalmus maximus. Mar. Biol. 119: 471–486. Statistical Analyses of
Freshwater Fisheries Data. American Fisheries Society Publication.
Sveier, H., Kvamme, B.O. & Raae, A.J. 2001. Growth and protein utilization in Atlantic salmon (Salmo salar L.)
given a protease inhibitor in the diet. Aquaculture Nutrition 7; 255-264.
Tacon AGJ, Jackson AJ. 1985.Utilization of conventional and unconventional protein sources in practical fish feeds.
In: Cowey CB, Mackie AM, Bell JG, editors. Nutrition and Feeding in Fish. London: Academic Press,
:119–45.
Tengjaroenkul B, Smith B.J, Caceci, T, & Smith SA. 2000. Distribution of intestinal enzymes activities along the
intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 182:317–27.
Torrissen, K.R. 1991. Genetic variation in growth rate of Atlantic salmon with different trypsin-like isozyme
patterns. Aquaculture 93: 299–312.
Ueberschär B. 1995.The use of tryptic enzyme activity measurement as a nutritional condition index: laboratory
calibration data and field application. ICES Mar. Sci. Symp. 201:119-29.
Yúfera, M., Fernández-Díaz, C., Vidaurreta, A., Cara, J.B. and Moyano, F.J. 2004. Gastrointestinal pH and
development of the acid digestión in larvae and early juveniles of Sparus aurata (Pisces: Teleostei). Marine
Biology 144: 863–869.
Zambonino Infante, J. L. & Cahu, C. 1994. Development and response to a diet change of some digestive enzymes in
sea bass (Dicentrarchus labrax) larvae. Fish Physiology and Biochemistry 12, 399–408.