Desarrollo de una Fitasa Bacteriana Recombinante para su Aplicación en la Nutrición Acuícola

Authors

  • M. Guerrero-Olazarán Universidad Autónoma de Nuevo León
  • J.G. Carreon-Treviño Universidad Autónoma de Nuevo León
  • L.E. Cruz-Suárez Universidad Autónoma de Nuevo León
  • D. Ricque-Marie Universidad Autónoma de Nuevo León
  • K.P. Contreras-Torres Universidad Autónoma de Nuevo León
  • J.A. Gallegos-López Universidad Autónoma de Nuevo León
  • E.L. Cab-Barrera Universidad Autónoma de Nuevo León
  • J.M. Viader- Salvadó Universidad Autónoma de Nuevo León

Abstract

Las fitasas son importantes aditivos de alimentos que incrementan la disponibilidad de fósforo y otros minerales
debido a la hidrólisis enzimática del ácido fítico, un factor anti-nutricional presente en la mayoría de los alimentos a
base de cereales o leguminosas. En este trabajo se desarrolló una forma recombinante de la fitasa C de Bacillus
subtilis (PhyC-R) producida en Pichia pastoris y se evaluó su potencial para su aplicación en la nutrición animal
comparando sus propiedades contra dos fitasas comerciales de origen fúngico. La PhyC-R mostró ser una proteína
glicosilada y con actividad a intervalos más amplios de pH (5.5 a 9) y temperatura (25 a 70°C) que las fitasas
comerciales. Además, mostró mayor actividad residual a 80ºC por 10 min (85 ± 2%) que las dos fitasas comerciales
(65 ± 6 y 48 ± 3 %) y mayor que la reportada y evaluada para la forma nativa. Todas las fitasas fueron estables a las
enzimas digestivas de camarón blanco del Pacífico (Litopenaeus vannamei) y tripsina porcina con valores de
actividad residual de 67 a 100%. Con la PhyC-R se logró disponer de 3.2 ± 0.2 μg P/mg de harina (16-22 % menos
que las fitasas comerciales) en soya y en harina de chícharo 4.7 ± 0.2 μg P/mg (0-15% menos que las fitasas
comerciales). PhyC-R es una alternativa viable para aplicarse como aditivo para incrementar la disponibilidad de
fósforo fítico y otros nutrientes en alimentos para camarón y en especies con características fisiológicas semejantes,
también podría ser empleada en procesos industriales en condiciones suaves (pH neutros y bajas temperaturas) para
disponer del fósforo fítico en harinas de origen vegetal.

Downloads

Download data is not yet available.

References

Bai DQ, Qiao XT, Wei D, Guo L, Qi HL. 2004. Effects of phytase on the performance of protein hydrolysis enzyme

in the intestine and liver of common carp. J. Chin. Feed 2: 34–38.

Barrientos L, Scott JJ, Murthy PP. 1994. Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen.

Plant Physiol. 106: 1489–1495.

Baruah K, Sahu NP, Pal AK, Debnath D. 2004. Dietary phytase: an ideal approach for a cost effective and lowpolluting

aquafeed. NAGA World Fish Center Quart. 27: 15–19.

Davis DA, Johnston WL, Arnold CR. 2000. El uso de suplementos enzimáticos en dietas para camarón. pp 452-462.

En: Civera-Cerecedo, R., Perez-Estrada C.J., Ricque Marie D. y Cruz-Suárez L.E. (eds.) Avances en

Nutrición Acuícola IV. Memorias del IV Simposio Internacional en Nutrición Acuícola. Noviembre 15-18,

La Paz, B.C.S., México.

Debnath D, Pal AK, Sahu NP. 2005. Effect of dietary microbial phytase supplementation on growth and nutrient

digestibility of Pangasius pangasius (Hamilton) fingerlings. Aquacult Res 36(2): 180–187.

Fiske CH, Subbarow Y. 1925. The colorimetric determination of phosphorus. J. Biol. Chem. 66: 375-400.

Fredrikson M, Alminger ML, Carlsson NG, Sandberg AS. 2001. Phytate content and phytate degradation by

endogenous phytase in pea (Pisum sativum). J. Sci. Food Agric. 81: 1139-1144.

Guerrero-Olazarán M, Rodríguez-Blanco L, Viader-Salvadó JM. 2007. Producción de una fitasa recombinante en

Pichia pastoris. CIENCIA UANL 10(4): 413-418.

Haefner S, Knietsch A, Scholten E,. Braun J, Lohscheidt M, Zelder O. 2005. Biotechnological production and

applications of phytases. Appl. Microbiol. Biotechnol. 68: 588–597.

Han Y, Wilson DB, Lei XG. 1999. Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces

cerevisiae. Appl. Environ. Microbiol. 65: 1915–1918.

Hara A, Ebina S, Kondo A, Funagua T. 1985. A new type of phytase from Typha latifolia L. Agric. Biol. Chem. 49:

–3544.

Idriss EE, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Richter T, Borriss R. 2002. Extracellular

phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant growth-promoting effect.

Microbiology 148: 2097–2109.

Jackson L, Li MH, Robinson EH. 1996. Use of microbial phytase in channel catfish Ictalurus punctatus diets to

improve utilization of phytate phosphorus. J. World. Aquacult. Soc 27(3): 309–313.

Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J. 1998. Isolation, characterization, molecular gene

cloning, and sequencing of a novel phytase from Bacillus subtilis. Appl. Environ. Microbiol. 64: 2079–

Kerovuo J, Lappalainen I, Peinikainen T. 2000. The metal dependence of Bacillus subtilis phytase. Biochem.

Biophys. Res. Commun. 268(2): 365-369.

Kim YO, Lee JK, Kim HK, Yu JH, Oh TK. 1998. Cloning of the thermostable phytase gene (phy) from Bacillus sp.

DS11 and its overexpression in Escherichia coli. FEMS Microbiol. Lett. 162: 185–191.

Lei XG, Stahl CH. 2001. Biotechnological development of effective phytases for mineral nutrition and

environmental protection. Appl. Microbiol. Biotechnol. 57: 474-481.

Li MH, Robinson EH. 1997. Microbial phytase can replace inorganic phosphorus supplements in channel catfish

Ictalurus punctatus diets. J. World Aquacult. Soc 28: 402–406.

Ling C, Weimin W, Chengtai Y, Yi Y, James DC, Amararatne Yakupitiyage B, Zhi L, Dapeng L. 2007. Application

of microbial phytase in fish feed. Enzyme Microbial Technol. 40: 497–507.

Liu BL,Rafiq A, Tzeng YM, Rob A. 1998. The induction and characterization of phytase and beyond. Enzyme

Microbial Technol. 22: 415-424.

Mayer A.F, Hellmuth K, Schlieker H, Lopez-Ulibarri R, Oertel S, Dahlems U, Strasser AWM, van Loon APGM.

An expression system matures: A highly efficient and cost-effective process for phytase production

by recombinant strains of Hansenula polymorpha. Biotechnol. Bioeng. 63: 373-381.

Miksch G, Kleist S, Friehs K, Flaschel E. 2002. Overexpression of the phytase from Escherichia coli and its

extracellular production in bioreactors. Appl. Microbiol. Biotechnol. 59: 685-694.

Oh BC, Choi WC, Park S, Kim Yo, Oh TK. 2004. Biochemical properties and substrate specificities of alkaline and

histidine acid phytases. Appl. Microbiol. Biotechnol. 63: 362–372.

Papatryphon E, Howell RA, Soares JH. 1999. Growth and mineral absorption by striped bass Morone saxatilis fed a

plant feedstuff based diet supplemented with phytase. J. World Aquacult. Soc. 30: 161–173.

Powar VK, Jagannathan V. 1982. Purification and properties of phytate-specific phosphatase from Bacillus subtilis.

J. Bacteriol. 151: 1102–1108.

Riche M, Trottier NL, Ku PK. 2001. Apparent digestibility of crude protein and apparent availability of individual

amino acids in tilapia (Oreochromis niloticus) fed phytase pretreated soybean meal diets. Fish Physiol.

Biochem. 25: 181–194.

Ricque-Marie D, Cruz-Suarez LE, Zavala-Chavez BM, Nieto-Lopez M, Guajardo C, Tapia-Salazar McCallum IM

and Newkirk R. 2004. Effect of a phytase product on protein and phosphorus digestibility in shrimp

Litopenaeus vannamei fed an air classified pea protein flour (Ppf) based diet. In: Cruz Suárez, L.E., Ricque

Marie, D., Nieto López, M.G., Villarreal, D., Scholz, U. y González, M. 2004. Avances en Nutrición

Acuícola VII. Memorias del VII Simposium Internacional de Nutrición Acuícola. 16-19 Noviembre, 2004.

Hermosillo, Sonora, México.

Robinson EH, Li MH, Manning BB. 2002. Comparison of microbial phytase and dicalcium phosphate for growth

and bone mineralization of pond-raised channel catfish, Ictalurus punctatus. J. Appl. Aquacult. 12: 81–88.

Rodriguez E, Porres JM, Han Y, Lei XG. 1999. Different sensitivity of recombinant Aspergillus niger phytase (rphyA)

and Escherichia coli pH 2.5 acid phosphatase (r-AppA) to trypsin and pepsin in vitro. Arch.

Biochem. Biophys. 365(2): 262-267.

Sajjadi M, Carter CG. 2004. Effect of phytic acid and phytase on feed intake, growth, digestibility and trypsin

activity in Atlantic salmon (Salmo salar L.). Aquacult. Nutr. 10(2): 135–142.

Schaefer A, Koppe WM. 1995. Effect of a microbial phytase on utilization of native phosphorus by carp in a diet

based on soybean meal. Water Sci. Technol. 31(1): 149–155.

Scott JJ. 1991. Alkaline phytase activity in nonionic detergent extracts of legume seeds. Plant Physiol. 95: 1298–

Storebakken T, Shearer KD, Roem AJ. 1998. Availability of protein, phosphorus and other elements in fishmeal,

soy-protein concentrate and phytase-treated soy-proteinconcentrate-based diets to Atlantic salmon, Salmo

salar. Aquaculture 161(1): 365–379.

Sugiura SH, Gabaudan J, Dong FM, Hardy RW. 2001 Dietary microbial phytase supplementation and the utilization

of phosphorus, trace minerals and protein by rainbow trout Oncorhynchus mykiss (Walbaum) fed soybean

meal-based diets. Aquacult. Res. 32: 583–592.

Tye AJ, Siu FK, Leung TY, Lim BL. 2002. Molecular cloning and the biochemical characterization of two novel

phytases from B. subtilis 168 and B. licheniformis. Appl. Microbiol. Biotechnol. 59: 190–197.

Urbano G, Lopez-Jurado M, Aranda P, Vidal-Valverde C, Tenorio E, Porres J. 2000. The role of phytic acid in

legumes: antinutrient or beneficial function? J. Physiol. Biochem .56: 283–294.

Van Etten RL, Davidson R, Stevis PE, MacArthur H, Moore DL. 1991. Covalent structure, disulfide bonding, and

identification of reactive surface and active site residues of human prostatic acid phosphatase. J Biol Chem

:2313–2319.

Van Weerd JH, Khalaf KH, Aartsen EJ, Tijssen PA. 1999. Balance trials with African catfish Clarias gariepinus fed

phytase-treated soybean meal-based diets. Aquacult. Nutr. 5(2): 135–142.

Viader-Salvadó JM, Castillo-Galván M, Guerrero-Olazarán M. 2008. Desarrollo de un proceso para la producción de

una fitasa recombinante. Memoria en extenso IV Simposio Internacional de Ciencia y Tecnología de

Alimentos. Villahermosa Tabasco, México, 24-26 de septiembre de 2008.

Vielma J, Lall SP, Koskela J. 1998. Effects of dietary phytase and cholecalciferol on phosphorus bioavailability in

rainbow trout (Oncorhynchus mykiss). Aquaculture 163(3): 309–23.

Vielma J, Ruohonen K, Gabaudan J, Vogel K. 2004. Top-spraying soybean mealbased diets with phytase improves

protein and mineral digestibility but not lysine utilization in rainbow trout, Oncorhynchus mykiss

(Walbaum). Aquacult. Res. 35(10): 955–964.

Vohra A, Satyanarayana T. 2003. Phytases: microbial sources, production, purification, and potential

biotechnological applications. Crit. Rev. Biotechnol. 23(1): 29-60.

Wyss M, Brugger R, Kronenberger A, Remy R, Fimbel R, Oesterhelt G, Lehmann M, van Loon APGM. 1999.

Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolase):

Catalytic properties. Appl. Environm. Microbiol. 65: 367-373.

Yoo GY, Wang XJ, Choi SM, Han KM. 2005. Dietary microbial phytase increased the phosphorus digestibility in

juvenile Korean rockfish Sebastes schlegeli fed diets containing soybean meal. Aquaculture 243: 315–322.

Yu FN, Wang DZ. 2000. The effects of supplemental phytase on growth and the utilization of phosphorus by crucian

carp Carassius carassius. J. Fish Sci. Chin. 7(2): 106–109.

How to Cite

Guerrero-Olazarán, M., Carreon-Treviño, J., Cruz-Suárez, L., Ricque-Marie, D., Contreras-Torres, K., Gallegos-López, J., … Viader- Salvadó, J. (2008). Desarrollo de una Fitasa Bacteriana Recombinante para su Aplicación en la Nutrición Acuícola. Avances En Nutrición Acuicola. Retrieved from https://nutricionacuicola.uanl.mx/index.php/acu/article/view/155

Most read articles by the same author(s)