Bioquímica Digestiva en Especies Acuicultivadas: Aplicaciones en Nutrición

Autores/as

  • Fco. Javier Moyano López Univ. Almería

Resumen

El estudio de las enzimas digestivas, sus características, funcionalidad y adaptaciones al régimen alimenticio,
conforman uno de los campos de investigación más amplios e interesantes en la nutrición de especies acuicultivadas.
Un gran número de investigaciones han abordado aspectos que van desde la descripción de los parámetros
funcionales de las principales enzimas hasta la forma en que éstas pueden ser utilizadas para modelizar la digestión
en una especie concreta o su papel como indicadores de la condición nutricional durante la etapa larvaria. El presente
trabajo pretende llevar a cabo un repaso somero a todos estos aspectos, planteando además las perspectivas de
futuras investigaciones en bioquímica de la digestión.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alarcon, F.J., Díaz, M., Moyano, F.J. & Abellan, E., 1998. Characterization and functional properties of digestive

proteases in two sparids; gilthead seabream Sparus aurata, L. and common dentex Dentex dentex . Fish

Physiol. Biochem. 19, 257–267.

Alarcón, F.J., Martínez, I.; Díaz, M., & Moyano, F.J. 2001. Characterization of digestive carbohydrase activity in the

gilthead seabream (Sparus aurata). Hydrobiologia 445:199–204

Alarcón, F.J.; Moyano, F.J. & Díaz, M. 1999. Effect of inhibitors present on protein sources on digestive porteases of

juvenile sea bream (Sparus aurata). Aquat Living Resources 12:233-238

Alarcón, F.J.; Moyano, F.J. & Díaz, M. 2002. Evaluation of different protein sources for aquafeeds by an optimised

pH-stat system. J. Sci Food Agric 82: 697-704

Applebaum, S.L.; Holt, A.J. 2003. The digestive protease, chymotrypsin, as an indicator of nutritional condition in

larval red drum (Sciaenops ocellatus). Mar. Biol.142:1159–67

Baglole, C. J., Goff, G. P. & Wright, G. M. 1988. Distribution and ontogeny of digestive enzymes in larval

yellowtail and winter flounder. Journal of Fish Biology 53, 767–784.

Beirao, L. H., Mckintoch, M. I., Evanilda, T. and César. 2001. Purification and characterization of trypsin-like

enyme from the pyloric caeca of cod (Gadus morhua) II. Brazilian Arch. Biol. Techn. 44 1: 33-40.

Belitz, H.-D.; Weder, J. K. P. Protein inhibitors of hydrolases in plants foodstuffs. Food Rev. Int. 1990, 6, 151-211.

Bezerra, R.S, Lins E.J., Alencar, R.B., Paiva, P.M.; Chaves, M.E., Coelho, L.C. & Carvalho, L.B. 2005. Alkaline

proteinase from intestine of Nile tilapia (Oreochromis niloticus). Process Biochemistry 40:1829–1834

C. Cahu,, I. Rønnestad , V. Grangiera, & J.L. Zambonino Infante. 2004.Expression and activities of pancreatic

enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolyzed dietary

protein; involvement of cholecystokinin. Aquaculture 238:295–308

Cahu, C.L. & Zambonino Infante, J. L. 1995. Maturation of the pancreatic and intestinal digestive functions in sea

bass (Dicentrarchus labrax): effect of weaning with different protein sources. Fish Physiology and

Biochemistry 14, 431–437.

Cara, J. B, Moyano,; F.J.; Zambonino, J.L. & Fauvel, C. Trypsin and chymotrypsin as indicators of nutritional status

of post-weaned sea bass larvae. J. Fish Biology (in press)

Chiu, Y.N., Benitez, L.V., 1981. Studies on the carbohydrases in the digestive tract of milkfish Chanos chanos. Mar.

Biol. 61, 247–254.

Cho, C.Y. & Slinger, S.J. 1979.Apparent digestibility measurement in feedstufs for rainbow trout. In: Finfish

Nutrition and Fishfeed Technology (Halver, J.E. & Tiews, K. eds), Vol. 2, pp. 239-247. Heenemann-

Verlagsgesellschaft, Berlin.

Choubert, G., de la Noue, J. & Luquet, P. 1982 Digestibility in Fish: Improved device for the automatic collection of

feces. Aquaculture, 29, 185-189.

Clark, J., Murray, K.R. and Stark, J.R. 1986. Protease development in dover sole (Solea solea) Aquaculture 53: 253–

Cohen, T., Gertler, A., Birk, Y., 1981. Pancreatic proteolytic enzymes from carp (Cyprinus carpio): I. Purification

and physical properties of trypsin, chymotrypsin, elastase and carboxypeptidase. Comp. Biochem. Physiol.

B, 639– 646.

Cuvier-Peres A., Jourdan, S.; Fontaine, P. & Kestemont, P. 2001. Effects of light intensity on animal husbandry and

digestive enzyme activities in sea bass Dicentrachus labrax post-larvae. Aquaculture 202:317–328

Deguara, S., Jauncey, K. and Agius, C. 2003. Enzyme activities and pH variations in the digestive tract of gilthead

sea bream. Journal of Fish Biology 62: 1033–1043.

Díaz, M.; Sánchez, V.; Vila, E.; Arizcun, M. y Moyano, F.J. 2005. Variaciones cuali- y cuantitativas en las proteasas

digestivas del dentón derivadas del incremento del ayuno en el historial de alimentación. Actas X Congreso

Nac. Acuicultura. Valencia. España

Dimes, L.E., Haard, N.F., Dong, F.M., 1994. Estimation of protein digestibility. II. In vitro assay of protein in

salmonid feeds. Comp. Biochem. Physiol. 108 A, 363-370.

El-Sayed, A.F.M, I. Martínez & Moyano, F.J. 2000. Assesement of the effect of plant inhibitors on digestive

proteases of Nile tilapia using in vitro assays. Aquaculture International: 1-13

Einarsson S, Spencer-Davies P, Talbot. C.1996. The effect of feeding on the secretion of pepsin, trypsin and

chymotrypsin in the Atlantic salmon, Salmo salar. Fish Physiol. Biochem.15:439-446

Einarsson S, Spencer-Davies P, Talbot, C.1997. Effect of exogenous cholecystokinin on the discharge of the

gallbladder and the secretion of trypsin and chymotrypsin from the pancreas of the Atlantic salmon, Salmo

salar L. Comp Biochem Physiol C 117:63–67

Fernandez, I.; Moyano, F.J.; Díaz, M., & Martínez, T. 2001. Characterization of a-amylase activity in five species of

Mediterranean sparid fishes (Sparidae, Teleostei).Journal of Experimental Marine Biology and Ecology

: 1–12

Ferron A, Leggett W.C. 1994. An appraisal of condition measures for marine fish larvae. Adv. Mar. Biol. 30:217-303

Furné, M. M.C. Hidalgo, A. López, M. García-Gallego, A.E. Morales, A. Domezain, J. Domezain &, A. Sanz. 2005.

Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus

mykiss. A comparative study. Aquaculture 250 391– 398

Gawlicka, A., Teh, S. J., Hung, S. S. O., Hinton, D. E. & De La Noue, J. 1995. Histological and histochemical

changes in the digestive tract of white sturgeon larvae during ontogeny. Fish Physiology and Biochemistry

, 357–371.

Haard N. F. 1992. A review of proteolytic enzymes from marine organisms and their application in the food industry.

J Aquatic Food Product Technol 1992;1:17–35.

Hoehne-Reitan, K., Kjorsvik, E. & Retan, K. I. 2001. Bile salt-dependent lipase in larval turbot, as influenced by

density and lipid content of fed prey. Journal of Fish Biology 58, 746–754.

Izquierdo, M.S. & Henderson, R.J. 1998. The determination of lipase and phospholipase activities in gut contents of

turbot (Scophthalmus maximus) by fluorescence-based assays. Fish Physiol. Biochem. 19: 153–162.

Kitamikado, M. and Tachino, S. 1960. Studies on the digestive enzymes of rainbow trout proteases. Bull. Jap. Soc.

Sci. Fish. 26: 685–690.

Kolkowski, S., Tandler, A., Kissil, G. W. & Gertler, A. 1993. The effect of dietary exogenous enzymes on ingestion,

assimilation, growth and survival of gilthead seabream (Sparus aurata) larvae. Fish Physiology and

Biochemistry 12, 203–209

Koven; W. C.R. Rojas-García, R.N. Finn, A. Tandler & I. Rønnestad. 2002. Stimulatory effect of ingested protein

and/or free amino acids on the secretion of the gastro-endocrine hormone cholecystokinin and on tryptic

activity, in early-feeding herring larvae, Clupea harengus Marine Biology 140: 1241–1247

Krogdahl A, Holm H. 1983. Pancreatic proteinases from man, trout, rat, pig, cow, chicken, mink and fox. Enzyme

activities and inhibition by soybean and lima bean proteinase inhibitors. Comp Biochem Physiol 74B:403–9.

Kurtovic, I.; Marshall, S.N.; Simpson B.K. 2006.Isolation and characterization of a trypsin fraction from the pyloric

ceca of chinook salmon (Oncorhynchus tshawytscha).Comp. Biochem. Physiol. B 143:432–440.

Lemieux H., Blier P., Dutil J.D. 1999. Do digestive enzymes set a physiological limit on growth rate and food

conversion efficiency in the Atlantic cod (Gadus morhua)? Fish Physiol. and Biochem. 20:293-303.

Lin Yan & Xiao Qiu-Zhou. 2006. Dietary glutamine supplementation improves structure and function of intestine of

juvenile Jian carp (Cyprinus carpio var. Jian) Aquaculture 256: 389–394.

Male, R., Lorens, J.B., Smalas, A. & Torrissen, K.A. 1995. Molecular cloning and characterization of anionic and

cationic variants of trypsin from Atlantic salmon. Eur. J. Biochem. 232, 677-685.

Maragoudaki D, Paspatis M, Kentouri, M. 2001.Growth and feeding responses of juvenile red porgy to restrictive

self-feeding regimes. Aquaculture International 9:153-70.

Martínez, I.; Moyano, F.J.; Fernández-Díaz, C. & Yúfera, M.1999. Digestive enzyme activity during larval

development of the Senegal sole (Solea senegalensis) Fish Physiology and Biochemistry 21: 317–323

Moyano, F. J., Díaz, M., Alarcón, F. J. & Sarasquete, M. C. 1996. Characterization of digestive enzyme activity

during larval development of gilthead seabream (Sparus aurata). Fish Physiology and Biochemistry 15,

–130.

Moyano, F.J.; Martínez, I.; Díaz, M. & Alarcón, F.J. 1999. Inhibition of digestive proteases by vegetable meals in

three fish species; seabream (Sparus aurata), tilapia (Oreochromis niloticus) and African sole (Solea

senegalensis). Comp. Biochem. Physiol B 122 ; 327–332.

Munilla-Morán, R. and Saborido-Rey, F. 1996. Digestive enzymes in marine species. I. Proteinase activities in gut

from redfish (Sebastes mentella), seabream (Sparus aurata) and turbot (Scophthalmus maximus) Comp.

Biochem. Physiol. 113B: 818–826.

Munilla-Morán, R., Saborido-Rey, F., 1996. Digestive enzymes in marine species. II. Amylase activities in gut from

seabream (Sparus aurata), turbot (Scophthalmus maximus) and redfish (Sebastes mentella). Comp.

Biochem. Physiol. 113B, 827– 834.

Olsson, C.; Aldman, G,; Larsson, A. & Holmgren, S. 1999. Cholecystokinin affects gastric emptying and stomach

motility in the rainbow trout Oncorhynchus mykiss The Journal of Experimental Biology 202, 161–170.

Pedersen, B.H, Nilssen, E.M, Hjelmeland, K.1987.Variations in the content of trypsin and trypsinogen in larval

herring (Clupea harengus) digesting copepod nauplii. Mar. Biol. 1987; 94:171-81.

Pope, K.L, Kruse C.G.2001. Assessment of Fish Condition Data. En: Guy C, Brown M, ed. Statistical Analyses of

Freshwater Fisheries Data. American Fisheries Society Publication.

Roach, J.C. 2002.A Clade of Trypsins Found in Cold-Adapted Fish. Proteins: Structure, Function, and Genetics

:31–44.

Rojas-García, C. R. Rønnestad, I., 2002. Cholecystokinin and tryptic activity in the gut of developing Atlantic

halibut (Hippoglossus hippoglossus): evidence for participation in the regulation of protein digestion. J.

Fish Biol.61, 973–986.

Rønnestad, I., Conceição, L. E. C., Aragão, C., Dinis, M. T., 2001. Assimilation and catabolism of dispensable and

indispensable free amino acids in post-larval Senegal sole (Solea senegalensis). Comp. Biochem. Physiol.C.

: 461-466.

Rungruangsak-Torrissen, K., Pringle, G.M.,Moss, R. and Houlihan, D.F. 1998. Effects of varying rearing

temperatures on expression of different trypsin isozymes, feed conversion efficiency and growth in Atlantic

salmon (Salmo salar L.). Fish Physiol. Biochem. 19: 247–255.

Rungruangsak-Torrissen, K., Rustad, A., Sunde, J., Eiane, S.A., Jensen, H.B., Opstvedt, J., Nygård, E., Samuelsen,

T.A., Mundheim, H., Luzzana, U. and Venturini, G. 2002. In vitro digestibility based on fish crude enzyme

extract for prediction of feed quality in growth trial. J. Sci. Food Agric. 82: 644–654.

Sánchez-Muros, M.J, Corchete, V., Suárez, M.D., Cardenote, G, Gómez-Milán, E., & De la Higuera M. 2003. Effect

of feeding method and protein source on Sparus aurata feeding patterns. Aquaculture 224:89-103.

Segner,H., Storch, V., Reinecke, M., Kloas, W. & Hanke, W.1994. The development of functional digestive and

metabolic organs in turbot, Scophthalmus maximus. Mar. Biol. 119: 471–486. Statistical Analyses of

Freshwater Fisheries Data. American Fisheries Society Publication.

Sveier, H., Kvamme, B.O. & Raae, A.J. 2001. Growth and protein utilization in Atlantic salmon (Salmo salar L.)

given a protease inhibitor in the diet. Aquaculture Nutrition 7; 255-264.

Tacon AGJ, Jackson AJ. 1985.Utilization of conventional and unconventional protein sources in practical fish feeds.

In: Cowey CB, Mackie AM, Bell JG, editors. Nutrition and Feeding in Fish. London: Academic Press,

:119–45.

Tengjaroenkul B, Smith B.J, Caceci, T, & Smith SA. 2000. Distribution of intestinal enzymes activities along the

intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 182:317–27.

Torrissen, K.R. 1991. Genetic variation in growth rate of Atlantic salmon with different trypsin-like isozyme

patterns. Aquaculture 93: 299–312.

Ueberschär B. 1995.The use of tryptic enzyme activity measurement as a nutritional condition index: laboratory

calibration data and field application. ICES Mar. Sci. Symp. 201:119-29.

Yúfera, M., Fernández-Díaz, C., Vidaurreta, A., Cara, J.B. and Moyano, F.J. 2004. Gastrointestinal pH and

development of the acid digestión in larvae and early juveniles of Sparus aurata (Pisces: Teleostei). Marine

Biology 144: 863–869.

Zambonino Infante, J. L. & Cahu, C. 1994. Development and response to a diet change of some digestive enzymes in

sea bass (Dicentrarchus labrax) larvae. Fish Physiology and Biochemistry 12, 399–408.

Descargas

Cómo citar

Moyano López, F. J. (2019). Bioquímica Digestiva en Especies Acuicultivadas: Aplicaciones en Nutrición. Avances En Nutrición Acuicola. Recuperado a partir de https://nutricionacuicola.uanl.mx/index.php/acu/article/view/178