Indicadores del Desarrollo Morfofuncional durante la Ontogenia Inicial de Peces Teleósteos: una Revisión

Authors

  • Carlos Alberto Cuenca-Soria Instituto Politécnico Nacional CICIMAR
  • José Luis Ortíz-Galindo Instituto Politécnico Nacional CICIMAR
  • Dariel Tovar-Ramírez Centro de Investigaciones Biológicas del Noroeste
  • Carlos Alfonso Álvarez-González Laboratorio de Acuicultura Tropical UJAT-DACBIOL
  • Rosa Isabel Ochoa-Báez Instituto Politécnico Nacional CICIMAR
  • Jesús Iván Murillo-Álvarez Instituto Politécnico Nacional CICIMAR

Keywords:

Indicadores, desarrollo, morfofuncional, ontogenia, peces teleósteos

Abstract

Para optimizar los protocolos de alimentación en peces teleósteos cultivables, en los últimos 30 años, los estudios se han dirigido a optimizar el uso del alimento vivo, durante la primera alimentación en el periodo larvario, que es el más crítico del cultivo de peces, hasta su transformación al juvenil. No obstante que esto ha significado avances innegables en el cultivo de peces marinos y aún dulceacuícolas, los altos costos que implican el establecimiento de infraestructura para los cultivos secundarios, han menguado seriamente la rentabilidad de la acuacultura. Más aún, la calidad nutricional del alimento vivo no siempre es garantía de cubrir los requerimientos nutricionales de los organismos de cultivo. Los indicadores (del tipo morfofuncional, bioquímico, histoquímico, inmunológico, molecular, entre otros), que se han empleado hasta ahora en la investigación de la ontogenia inicial (embrión, larva y juvenil) de peces cultivados, son de importancia crucial, pues contribuyen a proporcionar un mayor número de elementos, que permitirán prescindir cada vez más del alimento vivo con el diseño de alimentos inertes, acordes con la fisiología y capacidad digestivas de los peces cultivados y que a la postre, redundará en hacer más rentable la actividad acuícola. La presente revisión pretende describir los cambios que se suscitan a nivel morfofuncional y a la par, explorar los indicadores que hasta ahora han sido validados como herramientas e incluso los potenciales, con el objeto de conocer el grado de maduración de la morfología y función digestivas, durante la ontogenia inicial de peces teleósteos de importancia comercial.

Downloads

Download data is not yet available.

References

Alliot, E., Pastoureaud, A., Trellur, J., 1977. Evolution des activities enzymatiques dans le tuve digestif aucours de la vie larvaire du bar (Dicentrarchus labrax), variations des proteinogrammeset des zymogrammes. Colloq. Int. Cent. Nat. Rech. Sci. 4, 85-91.

Álvarez-González, C.A., Cervantes-Trujano, M., Tovar-Ramírez, D., Conklin, D.E., Nolasco, H., Gisbert, E., Piedrahita, R., 2006. Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish. Physiol. Biochem. 3, 83-93.

Álvarez-González, C.A., Moyano-López, F.J., Civera-Cerecedo, R., Carrasco-Chávez, V., Ortiz-Galindo, J., Dumas, S., 2008. Development of digestive enzyme activity in larvae of spotted sand bass (Palabrax maculatofasciatus).I. Biochemistry analysis. Fish. Physiol. Biochem. 34, 373-384.

Baglole, C.J., Murray, H.M., Goff, G.P. &Wright, G.M. 1997. Ontogeny of the digestive tract during larval development of yellowtail flounder: a light microscopic and mucous histochemical study. Journal of Fish Biology 51, 120-134.

Balon, E.K., 1999. Alternative ways to become a juvenile or a definitive phenotype (and on some persisting linguistic offenses). Env. Biol. Fish. 56, 17-38.

Balon, E.K., 2002. Epigenetic processes, when natura non facitsaltum becomes a myth, and alternative ontogenies a mechanism of evolution. Env. Biol. Fishes 65, 1-35.

Bergot, P. 1986. Elevage larvaire de la carpe commune (Cyprinus carpio L.): Alimentation artificielle. R. Billard at J. Marcel, Ed. Aquaculture of Cyprinids, INRA, Paris pp. 505.

Bisbal, G.A. & Bengtson, D.A., 1995. Development of digestive tract in larval summer flounder.J. Fish Biol. 47, 277-291.

Boulhic, M. & Gabaudan, J. 1992. Histological study of the organogenesis of the digestive system and swim bladder of Dover sole, Solea solea L. Aquaculture 102, 373-396.

Bryant, P.L. & Matty, A.J. 1980. Optimisation of Artemia feeding rate for carp larvae Cyprinus carpio L.). Aquaculture 21, 203-212.

Buchet, V., Zambonino-Infante, J.L. &, Cahu, C.L., 2000. Effect of lipid level in a compound diet on the development of red drum Sciaenops ocellatus larvae. Aquaculture 184, 339-347.

Cahu, C.L. & Zambonino-Infante, J.L., 1995. Maturation of the pancreatic and intestinal digestive functions in sea bass (Dicentrarchus labrax): effect of weaning with different protein sources. Fish Physiol. Biochem. 14, 431-437.

Cahu, C.L. & Zambonino-Infante, J.L., 2001. Substitution of live food by formulated diets in marine fish larvae.Aquaculture 200, 161-180.

Canino, M.F. & Bailey, K.M., 1995. Gut evacuation of walleye pollock larvae in response to feeding conditions. J. Fish. Biol. 46(3), 389-403.

Cara, J.B., Moyano, F.J., Cárdenas, S., Fernández-Díaz, C., Yufera, M., 2003. Assessment of digestive enzyme activities during larval development of white bream. J. Fish. Biol. 63, 48-58.

Chakrabarti, I., Gani, M.A., Chaki, K.K., Sur, R., Misra, K.K., 1995. Digestive enzymes in 11freshwater teleost fish species in relation to food habit and niche segregation. Comparative Biochemistry and Physiology Part A, Physiology 112, 167–177.

Clark, M.S., Edwards, Y.J., Peterson, D., Clifton, S.W., Thompson, A.J., Sasaki, M., Suzuki, Y., Kikuchi, K., Watabe, S., Kawakami, K., Sugano, S., Elgar, G., and Johnson, S.L. 2003. Fugu ESTs: new resources for transcription analysis and genome annotation. Genome Res. 12: 2747-2753.

Dabrowski, K., 1982. Proteolytic enzyme activity decline in starving fish alevins and larvae. Env. Biol. Fish. 7, 73-76.

Dabrowski, K., 1984. The feeding of fish larvae: “present state of the art” and perspectives. Reprod. Nutr. Dev., 24: 807-833.

Dahl, J., Pettersson, E., Dannewitz, J., Jarvi, T., Lof, A.C., 2006. No difference in survival, growth and morphology between offspring of wild-born, hatchery and hybrid brown trout Salmo trutta. Ecology of Freshwater Fisheries 15, 388-397. Darias M. J., Zambonino, J. L., Hugot K, Cahu, C., Mazurais, D. 2008. Gene expression patterns during the larval development of European sea bass (Dicentrarchus labrax) by microarray analysis. Marine Biotechnology, 10(4), 416-428.

Das, K.M. & Tripathi, S.D. 1991. Studies on the digestive enzymes of grass carp Ctenopharyngodon idella (VAL). Aquaculture 92, 21-32.

Del Río, V., Rosas, J., Velásquez, A., Cabrera, T., 2005. Desarrollo embrionario-larval y tiempo de metamorfosis del pez tropical Xenomelaniris brasiliensis (Pisces: Atherinidae). Rev. Biol. Trop. (Int. J. Trop. Biol.) 53(4), 503-513.

Falk-Petersen, I.B., 2005. Comparative organ differentiation during early life stages of marine fish. Fish & Shellfish Immunology, 19: 397-412.

García-Gasca, A., Galaviz, M.A., Gutiérrez, J.N., García-Ortega, A., 2006. Development of the digestive tract, trypsin activity and gene expression in eggs and larvae of the bullseye puffer fish Sphoeroides annulatus. Aquaculture 251, 366-376.

Gisbert, E., Piedrahita, R.H., Conklinm, D.E., 2004. Ontogenetic development of the digestive system in California halibut (Paralichthys californicus) with notes on feeding practices. Aquaculture 23, 455-470.

Gisbert, E., Ortiz-Delgado, J.B., Sarasquete, C., 2008. Nutritional cellular biomarkers in early life stages of fish. Histol. Histopathol. 23, 1525-1539.

Gorodilov, Y.N., 1996. Description of the early ontogeny of the Atlantic salmon, Salmo salar, with a novel system of interval (state) identification. Environmental Biology of fishes 47(2), 109-127. DOI: 10.1007/BF00005034.

Govoni, J.J., 1980. Morphological, histological, and functional aspects of alimentary canal and associated organ development in larval Leiosromus xanthurus. Rev. Can. Biol. 39, 69-80.

Govoni, J.J., Boehlert, G.W., Watanabe, Y., 1986. The physiology of digestion in fish larvae. Environmental Biology of Fishes 16, 59-77.

Guerreiro, I., de Vareilles, M., Pousão-Ferreira, P., Vera-Rodrigues, M.T.D., Ribeiro, L., 2010. Effect of age at weaning on digestive capacity of white seabream (Diplodus sargus). Aquaculture 300, 194-205.

Guan, H-h, Xu, Q-y, Zhi,, B-j,, Kuang, Y-y. Xu, W. & Yin, J-s. 2010. The post-embryonic development of digestive system and the demand of energy of Hucho taimen. Agr. Sci. China 9(2), 286-293.

Guo-Liang, R., Yang, L., Ze-Xia, G., Huan-Ling, W., Wei-Min., 2010. Molecular characterization of trypsinogens and development of trypsinogen gene expression and tryptic activities in grass carp (Ctenopharyngodon idellus) and top mouth culter (Culter alburnus). Comparative Biochemistry and Physiology 155(1), 77-85.

Falk-Petersen, I.B., 2005. Comparative organ differentiation during early life stages of marine fish. Fish & Shellfish Immunology 19, 397-412.

Hagen-Larsen, H., Laerdahl, J.K., Panitz, F., Adzhubei, A., and Høyheim, B. 2005. An ESTbased approach for identifying genes expressed in the intestine and gills of pre-smolt Atlantic salmon (Salmo salar). BMC Genomics, 6: 171.

He, T., Xiao Z., Liu, Q., Ma, D., Xu, S., Xiao, Y., Li, J., 2011. Ontogeny of the digestive tract and enzymes in rock bream Oplegnathus fasciatus (Temminck et Schlegel 1844) larvae. Fish Physiol. Biochem DOI 10. 1007/s10695-011-9507-y.

Hellberg, H. & Bjerkås, I. 2005. Intestinal epithelium in Anarhichas lupus L, with emphasis on cell renewal. Journal of Fish Biology 66, 1342-1356.

Hoehne-Reitan, K. & Kjoersvik, E. 2004. Functional development of the liver and exocrine pancreas in teleost fish. American Fisheries Society Symposium 40, 47-83.

Hofer, R., Via, D., Troppmair, J., Giussani, G., 1982. Differences in digestive enzymes between cyprinid and non-cyprinid fish,in: Marco De Marchi (Ed.). Mem.Ist. Ital. Idrobiol., pp. 201-208.

Hofer, R. & Nassin-Uddin, A. 1985. Digestive processes during the development of the roach (Rutilus rutilus L.). J. Fish. Biol. 26, 53-59.

Hofer, R., 1991. Cyprinid fishes, systematic, biology and exploitation. Chapman and Hall, Fish and fisheries, pp. 413-421.

Holcík, J., 1986. The freshwater fishes of Europe. AULA-Verlag, Wiesbaden. 1(1), pp.313.

Horn, M. H., Gawlicka, A. K., German, D. P., 2006. Structure and function of the stomachless digestive system in three related species of New World silverside fishes (Atherinopsidae) representing herbivory, omnivory and carnivory. Marine Biology 149, 1237-1245.

Houde, E., 1974. Effects or temperature and delayed feeding on growth and survival of larvae of three species of subtropical marine fishes.Mar. Biol. 26, 271-285.

Jonas, E., Ragyanssszk, M., Olah, J., Boross, L., 1983. Proteolytic digestive enzymes of carnivorous (Silurus glanis L.), herbivorous (Hypophtlamichthys molitrix Val.) and omnivorous (Cyprinus carpio) fishes.Aquaculture 30, 145-154.

Ju, Z., Karsi, A., Kocabas, A., Patterson, A., Li, P., Cao, D., Dunham, R., and Liu, Z. 2000. Transcriptome analysis of channel catfish (Ictalurus punctatus): genes and expression profile from the brain. Gene, 261(2): 373-382.

Kamisaka, Y., Kurokawa, T., Suzuki, T., Tagawa, T., Tanaka, M., Totland, G.K., Rønnestad, I., 2001. Ontogeny of cholecystokinin producing cells in Atlantic halibut (Hippoglossus hippoglossus) larvae. Gen. Comp. Endocrinol. 123, 31-37.

Kamisaka, Y., Kaji, T.S., Masuma, N., Tezuka, T., Kurokawa, T., Suzuki, T., Totland, G.K., Rønnestad.,I., Tagawa M., Tanaka, M., 2002.Ontogeny of cholecystokinin immunoreactive cells in the digestive tract of bluefin tuna, Thunnas thynnus, larvae.Sarsia 87, 258-262.

Kamisaka, Y., Yamamoto, S., Kurokawa, T., Rønnestad, I., Totland, G.K., Tagawa, M., Tanaka, M., 2003. Distribution of cholecystokinin immunoreactive cells in the digestive tract of the larvae teleost ayu, Plecoglossus altivelis. Gen. Comp. Endocrinol. 134(2), 116-121.

Kawai, S. & Ikeda, S., 1973. Studies on digestive enzymes of fishes. III. Development of the digestive enzymes of the rainbow trout after hatching and the effect of dietary change on the activities of digestive enzymes in the juvenile stage. Bulletin of the Japanese Society of Scientific Fisheries 39, 819-823.

Kjørsvik, E., Pittman, K., Pavlov, D., 2004. From Fertilization to the End of Metamorphosis-Functional Development, in: E. Moksness, E. Kjørsvik and Y. Olsen (Eds.), Culture of cold-water marine fish. Blackwell Publishing Ltd, Oxford, UK, pp. 204-278.

Kolkovski, S. Digestive enzymes in fish larvae and juveniles-implications and aplications to formulated diets. Aquaculture, 200: 181-201, 2001. Kortner, T.M., Overrein, I., Øie, G., Kjørsvik, E. and A. Arukwe. 2010. The influence of dietary constituents on the molecular ontogeny of digestive capability and effects on growth and appetite in Atlantic cod larvae (Gadus morhua). Aquaculture ,315:114-120.

Kurokawa, T., Suzuki, T., Andoh, T., 2000. Development of cholecystokinin and pancreatic polypeptide endocrine systems during the larval stage of japanese flounder, Paralichthys olivaceus. Gen. Comp. Endocrinol. 120, 8-16.

Lazo, J.P., Dinis, M.T., Holt, G.J., Faulk, C., Arnold, R.A. 2000. Co-feeding microparticulate diets with algae: toward eliminating the need of zooplankton at first feeding in larval red drum (Sciaenops ocellatus). Aquaculture 188, 339-351.

Liu, Z. Y., Wang, Z., Zhang, J., 2008.An acidic protease from the grass carp intestine Ctenopharyngodon idellus. Comparative Biochemistry and Physiology 149 (B), 83-90.

López-Ramírez, G., Cuenca-Soria, C. A., Álvarez-González, C. A., Tovar-Ramírez, D., Ortiz-Galindo J. L., Perales-García, N., Márquez-Couturier, G., Arias-Rodríguez, L., Indy, J.R., Contreras-Sánchez, W.M., Gisbert, E., Moyano,

F.J., 2011. Development of digestive enzymes in larvae of Mayan cichlid Cichlasoma urophthalmus. Fish Physiology and Biochemistry 37(1), 197-208.

Ma, H.,Cahu, C., Zambonino, J., Yu, H.,Duan, Q., Le Gall, M.M., Mai, K., 2005.Activities of selected digestive enzymes during larval development of large yellow croaker Pseudosciaena crocea. Aquaculture 245(1-4), 239-248.

Mark, W., Hofer, R.,Wieser, W., 1987. Diet spectra and resource partitioning in the larvae and juveniles of three species and six cohorts of cyprinids from a subalpine lake. Oecologia 71, 388-396.

Micale, V., Garaffo, M., Genovese, L., Spedicato, M.T., Muglia U., 2006. The ontogeny of the alimentary tract during larval development in common Pandora Pagellus erythrinus L. Aquaculture 251, 354-365.

Mitra, G., Mukhopadhyay, P.K., Ayyappan, S., 2008. Modulation of digestive enzyme activities during ontogeny of Labeo rohita larvae fed ascorbic acid enriched zooplankton. Comparative Biochemistry and Physiology 149(A), 341-350.

Moyano, F.J., Diaz, M., Alarcón, F.J., Sarasquete, M.C., 1996. Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol. Biochem. 15, 121-130.

Ortiz-Delgado, J. B., Ruane, N. M., Pousào-Ferreira, P., Dinis, M. T., Sarasquete, C., 2006. Thyroid gland development in Senegales sole, Solea senegalensis (Kaup 1858) during early life stages: a histochemical and immunohistochemical approach. Aquaculture 260, 536-561.

Pardo, B.G., Fernández, C., Millán, A., Bouza, C., Vázquez-López, A., Vera, M., AlvarezDios, J.A., Calaza, M., Gómez-Tato, A., Vázquez, M., Cabaleiro, S., Magariños, B., Lemos, M.L., Leiro, J.M., and Martínez, P. 2008. Expressed sequence tags (ESTs) from immune tissues of turbot (Scophthalmus maximus) challenged with pathogens. BMC Vet. Res. 4: 37.

Pavlov, D.A., 1993. Fertilization in wolffish, Anarhichas lupus: external or internal?. Voprosy Ikhtiologii 33(5), 664-670.

Pavlov, D.A., 1994a. Maturation and artificial fertilization of the eggs of captive common wolfish Anarhichas lupus L. from the White Sea. Aquaculture Research25:891-902

Pavlov, D.A. & Moksness, E. 1994. Reproductive biology, early ontogeny, and effect of temperature on development in wolffish: comparison with salmon. Aquaculture International 2, 133-153.

Pradhan, P. K.; Jena, J. K.; Mitra, G.; Sood, N.; Gisbert, E., 2012: Ontogeny of the digestive tract in butter catfish Ompok bimaculatus (Bloch) larvae. Fish Physiol. Biochem. DOI: 10.1007/s10695-012-9655-8.

Ribeiro, L., Sarasquete, C., Dinis, M.T., 1999a. Histological and histochemical development of the digestive system of Solea senegalensis (Kaup 1858) larvae. Aquaculture 171, 293-308.

Ribeiro, L., Zambonino-Infante, J.L., Cahu, C., Dinis, M.T., 1999b. Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 179, 465-473.

Rojas-García, C.R., Rønnestad, I., 2002. Cholecystokinin and tryptic activity in the gut of developing Atlantic halibut (Hippoglossus hippoglossus): evidence for participation in the regulation of protein digestion. J. Fish Biol. 61, 973-986.

Rosenlund, G., Stoss, J., Talbot, C., 1997. Co-feeding marine fish larvae with inert and live diet. Aquaculture 155, 183-191.

Ross, L.G., Martínez-Palacios. C.A, Aguilar Valdez, Ma. del C., Beveridge, M.C.M. and Chávez Sánchez, Ma. C. 2006. Determination of feeding mode in fish: the importance of using structural and functional feeding studies in conjunction with gut analysis in a selective zooplanktivore Chirostoma estor estor Jordan 1880. Journal of Fish Biology. 68: 1782-1794.

Rungruangsak-Torrissen, K., Moss, R., Andresen, L. H., Berg, A., Waagbø R., 2006. Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiol. Biochem. 32, 7-23.

Rust, M. B. Nutritional physiology. In: Halver, J. E. & Hardy, R. W. (Eds.). Fish Nutrition, 3rd. Ed., pp. 367-452.

Santamaría, C.A., Marín-de Mateo, M., Traveset, R., Sala, R., Grau, A., Pastor, E., Sarasquete, C., Crespo, S., 2004. Larval organogenesis in common dentex, Dentex dentex L. (Sparidae): histological and histochemical aspects. Aquaculture 237, 207-228.

Sarasquete, M.C., Polo, A., Yufera, M., 1995. Histology and histochemistry of the development of the digestive system of larval gilthead seabream, Sparus aurata L. Aquaculture (130), 79-92.

Sarieyyüpoğlu, M., Girgin, A., Köprücü, S., 2000. Histological study in the digestive tract on larval development of rainbow trout (Oncorhynchus mykiss, Ealbaum, 1972). Turk. J. Zool. 24, 199-205.

Segner, H., Storch, V., Reinecke, M., Kloas, W., Hanke, W., 1994. The development of functional digestive and metabolic organs in turbot Scophthalmus maximus. Mar. Biol. 119, 471-486.

Sorgeloos, P., 1980. The use of the brine shrimp Artemia in aquaculture, in: Persoone, G., Sorgeloos, P., Ž. Roels, O., Jaspers, E. (Eds.). The brine shrimp Artemia. Ecology, culturing and use in aquaculture, vol. 3. Universal Press, Wetteren, pp. 25-46.

Stroband, H.W.J. & Dabrowski, K.R. 1979. Morphological and physiological aspects of the digestive system and feeding in freshwater fish larvae, in: M. Fontaine (ed.) La Nutrition des Poisons, CNERNA, Paris, pp. 355-376.

Stroband, H.W.J., Meer, H.V.D., Timmermans, L.P.M., 1979. Regional functional differentiation in the gut of the grass carp, Ctenopharyngodon idella (Val.). Histochemistry 64, 235-249.

Tanaka, M., 1969a. Studies on the structure and function of the digestive system of teleost larvae development of the digestive system during prelarval stage. Jap. J. Ichthyol. 16, 1-9. Toledo-Cuevas, E. M., Moyano López, F. J., Tovar-Ramírez, D., Strüssmann, C. A., Álvarez-González, C. A., Martínez-Chávez, C. C. and Martínez-Palacios, C. A. 2011. Development of digestive biochemistry in the initial stages of three cultured Atherinopsids. Aquaculture Research, 42: 776–786.

Yan, L. & Qiu-Zhou, X. 2006. Dietary glutamine supplementation improves structure and function of intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture 256, 389-394.

Watanabe, T., Kitajima, C., Fujita, S., 1983.Nutritional value of live organism used in Japan for mass propagation for fish: A review. Aquaculture 34, 115-143.

Watanabe, Y., 1984a. An ultrastructural study of intracellular digestion of horseradish peroxidase by the rectal epithelium cells in larvae of a freshwater cottid fish Cortus nozawae. Bull. Jpn. Soc. Sci. Fish. 50, 409-416.

Wu, T.T. & Zhu, X.M. 1994. Study on the activity of digestive enzymes in mandarin fish, black carp, grass carp, common carp, crucian carp and silver carp. J. Fish. Sci. China (in Chinese) 12, 10-17.

Zambonino-Infante, J.L. & Cahu, C.L. 1994.Development and response to a diet change of some digestive enzymes in sea bass (Dicentrarchus labrax) larvae. Fish Physiol. Biochem. 12,399-408.

Zambonino-Infante, J.L., Cahu, C.L. Peres, A., Quazuguel, P., Le Gall, M.M., 1996. Sea bass (Dicentrarchus labrax) larvae fed different Artemia rations: growth, pancreas enzymatic response and development of digestive functions. Aquaculture 139: 129-138.

Zambonino-Infante, J. L. & Cahu, C.L. 2001. Ontogeny of the gastrointestinal tract of marine fish larvae. Comparative Biochemistry and Physiology Part C 130(4), 477-487. Zambonino J. L. & Cahu C. 2007. Dietary modulation of some digestive enzymes and Metabolic processes in developing marine fish: Applications to diet formulation. Aquaculture, 268(1-4), 98-105

Zambonino-Infante, J., Gisbert, E., Sarasquete, C., Navarro, I., Gutiérrez, J., Cahu, C. L., 2008.Ontogeny and physiology of the digestive system of marine fish larvae, in: Cyrino, J.E.O., Bureau, D., Kapoor C. (Eds.),Feeding and Digestive Functions of Fish. B.G. Science Publishers, Inc, Enfield, pp. 277-344.

Zeng, S. & Gong, Z.Y. 2002. Expressed sequence tag analysis of expression profiles of zebrafish testis and ovary. Gene, 294(1-2): 45-53.

Published

2013-11-30

How to Cite

Cuenca-Soria, C. A., Ortíz-Galindo, J. L., Tovar-Ramírez, D., Álvarez-González, C. A., Ochoa-Báez, R. I., & Murillo-Álvarez, J. I. (2013). Indicadores del Desarrollo Morfofuncional durante la Ontogenia Inicial de Peces Teleósteos: una Revisión. Avances En Nutrición Acuicola. Retrieved from https://nutricionacuicola.uanl.mx/index.php/acu/article/view/73

Most read articles by the same author(s)

Similar Articles

<< < 8 9 10 11 12 13 

You may also start an advanced similarity search for this article.