Comparative analysis of soybean meal effects in commercial strains of rainbow trout Oncorhynchus mykiss

Authors

  • Tsung-Yu Tasia University of Idao
  • Hector Luis Hernández Hernández Universidad Nacional Autónoma de México
  • Keneeth E. Overturf USDA-ARS
  • Madison S. Powell University of Idaho

Keywords:

Enteritis, Rainbow trout, Salmonids, soybean meal, S100 gene

Abstract

A strain of rainbow trout (CX strain) at the Hagerman Fish Culture Experiment Station has been selected for growth on a plant-based diet for ten generations. We Compared fish from the CX strain that were age (CXA) and size (CXS) matched to three commonly available commercial strains selected for growth (RBT1, RBT2, RBT3). We compared differences in overall growth, oxidative stress and intestinal inflammation between fish fed a fishmeal (FM) or soybean-meal (SBM) diet for 12 weeks. Fish of each strain were randomly assigned to FM or SBM diet groups and fed daily to satiation. Tissues from each experimental group were sampled every four weeks to assess gene expression and growth parameters. Both CX strains had higher growth rates compared with similar feed consumption among all groups. Expression of intestinal and hepatic biomarkers for oxidative stress varied between liver and intestine. Expression varied between CXA and CXS fish despite being from the same strain indicating size at age affects gene expression and care should be taken when comparing different strains with different growth rates. Expression of calcium binding protein S100I2 in the intestine was elevated initially at 4 weeks, diminished at 8 weeks, then elevated again by 12 weeks. This pattern was also observed in intestinal SOD expression and GPx expression in the liver. Overall, these results provide further information on current commercial strains of rainbow trout to help improve the utilization on plant protein sources in their diets.

Downloads

Download data is not yet available.

References

Baeverfjord, G., & Krogdahl, A. (1996). Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: A comparison with the intestines of fasted fish. Journal of Fish Diseases, 19(5), 375–387. https://doi.org/10.1046/j.1365-2761.1996.d01-92.x

Balasubramanian, M. N., Panserat, S., Dupont-Nivet, M., Quillet, E., Montfort, J., Le Cam, A., Medale, F., Kaushik, S. J., & Geurden, I. (2016). Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure. BMC Genomics, 17(1), 449. https://doi.org/10.1186/s12864-016-2804-1

Blaufuss, P. C., Bledsoe, J. W., Gaylord, T. G., Sealey, W. M., Overturf, K. E., & Powell, M. S. (2020). Selection on a plant-based diet reveals changes in oral tolerance, microbiota and growth in rainbow trout (Oncorhynchus mykiss) when fed a high soy diet. Aquaculture, 525, 735287. https://doi.org/10.1016/j.aquaculture.2020.735287

Blaufuss, P. C., Gaylord, T. G., Sealey, W. M., & Powell, M. S. (2019). Effects of high-soy diet on S100 gene expression in liver and intestine of rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 86, 764–771. https://doi.org/10.1016/j.fsi.2018.12.025

Boucher, R. L., Dupont-Nivet, M., Vandeputte, M., Kerneïs, T., Goardon, L., Labbé, L., Chatain, B., Bothaire, M. J., Larroquet, L., Médale, F., & Quillet, E. (2012). Selection for Adaptation to Dietary Shifts: Towards Sustainable Breeding of Carnivorous Fish. PLOS ONE, 7(9), e44898. https://doi.org/10.1371/journal.pone.0044898

Burrells, C., Williams, P. D., Southgate, P. J., & Crampton, V. O. (1999). Immunological, physiological and pathological responses of rainbow trout (Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins. Veterinary Immunology and Immunopathology, 72(3), 277–288. https://doi.org/10.1016/S0165-2427(99)00143-9

Callet, T., Dupont-Nivet, M., Danion, M., Burel, C., Cluzeaud, M., Surget, A., Aguirre, P., Kerneis, T., Labbé, L., Panserat, S., Quillet, E., Geurden, I., Skiba-Cassy, S., & Médale, F. (2021). Why Do Some Rainbow Trout Genotypes Grow Better With a Complete Plant-Based Diet? Transcriptomic and Physiological Analyses on Three Isogenic Lines. Frontiers in Physiology, 12, 732321. https://doi.org/10.3389/fphys.2021.732321

Callet, T., Médale, F., Larroquet, L., Surget, A., Aguirre, P., Kerneis, T., Labbé, L., Quillet, E., Geurden, I., Skiba-Cassy, S., & Dupont-Nivet, M. (2017). Successful selection of rainbow trout (Oncorhynchus mykiss) on their ability to grow with a diet completely devoid of fishmeal and fish oil, and correlated changes in nutritional traits. PLOS ONE, 12(10), e0186705. https://doi.org/10.1371/journal.pone.0186705

Chen, W., Chang, K., Chen, J., Zhao, X., & Gao, S. (2021). Dietary sodium butyrate supplementation attenuates intestinal inflammatory response and improves gut microbiota composition in largemouth bass (Micropterus salmoides) fed with a high soybean meal diet. Fish Physiology and Biochemistry, 47(6), 1805–1819. https://doi.org/10.1007/s10695-021-01004-w

Cheng, Z. J., Hardy, R. W., & Usry, J. L. (2003). Effects of lysine supplementation in plant protein-based diets on the performance of rainbow trout (Oncorhynchus mykiss) and apparent digestibility coefficients of nutrients. Aquaculture, 215(1), 255–265. https://doi.org/10.1016/S0044-8486(02)00166-7

Collins, S. A., Øverland, M., Skrede, A., & Drew, M. D. (2013). Effect of plant protein sources on growth rate in salmonids: Meta-analysis of dietary inclusion of soybean, pea and canola/rapeseed meals and protein concentrates. Aquaculture, 400–401, 85–100. https://doi.org/10.1016/j.aquaculture.2013.03.006

Council, N. R., Studies, D. on E. and L., Resources, B. on A. and N., & Shrimp, C. on the N. R. of F. and. (2011). Nutrient Requirements of Fish and Shrimp. National Academies Press.

Easy, R. H., & Ross, N. W. (2009). Changes in Atlantic salmon (Salmo salar) epidermal mucus protein composition profiles following infection with sea lice (Lepeophtheirus salmonis). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 4(3), 159–167. https://doi.org/10.1016/j.cbd.2009.02.001

FAO. (2018). The State of World Fisheries and Aquaculture 2018: Meeting the sustainable development goals. FAO. http://www.fao.org/documents/card/en/c/I9540EN/

Gatlin, D. M., Barrows, F. T., Brown, P., Dabrowski, K., Gaylord, T. G., Hardy, R. W., Herman, E., Hu, G., Krogdahl, Å., Nelson, R., Overturf, K., Rust, M., Sealey, W., Skonberg, D., Souza, E. J., Stone, D., Wilson, R., & Wurtele, E. (2007). Expanding the utilization of sustainable plant products in aquafeeds: A review. Aquaculture Research, 38(6), 551–579. https://doi.org/10.1111/j.1365-2109.2007.01704.x

Geay, F., Ferraresso, S., Zambonino-Infante, J. L., Bargelloni, L., Quentel, C., Vandeputte, M., Kaushik, S., Cahu, C. L., & Mazurais, D. (2011). Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet. BMC Genomics, 12(1), 522. https://doi.org/10.1186/1471-2164-12-522

Geurden, I., Borchert, P., Balasubramanian, M. N., Schrama, J. W., Dupont-Nivet, M., Quillet, E., Kaushik, S. J., Panserat, S., & Médale, F. (2013). The Positive Impact of the Early-Feeding of a Plant-Based Diet on Its Future Acceptance and Utilisation in Rainbow Trout. PLOS ONE, 8(12), e83162. https://doi.org/10.1371/journal.pone.0083162

Gregório, S. F., & Fuentes, J. (2018). Regulation of Bicarbonate Secretion in Marine Fish Intestine by the Calcium-Sensing Receptor. International Journal of Molecular Sciences, 19(4), 1072. https://doi.org/10.3390/ijms19041072

Hoseinifar, S. H., Yousefi, S., Van Doan, H., Ashouri, G., Gioacchini, G., Maradonna, F., & Carnevali, O. (2021). Oxidative Stress and Antioxidant Defense in Fish: The Implications of Probiotic, Prebiotic, and Synbiotics. Reviews in Fisheries Science & Aquaculture, 29(2), 198–217. https://doi.org/10.1080/23308249.2020.1795616

Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. https://doi.org/10.1016/j.ajme.2017.09.001

Karsi, A., Cao, D., Li, P., Patterson, A., Kocabas, A., Feng, J., Ju, Z., Mickett, K. D., & Liu, Z. (2002). Transcriptome analysis of channel catfish (Ictalurus punctatus): Initial analysis of gene expression and microsatellite-containing cDNAs in the skin. Gene, 285(1), 157–168. https://doi.org/10.1016/S0378-1119(02)00414-6

Knudsen, D., Urán, P., Arnous, A., Koppe, W., & Frøkiær, H. (2007). Saponin-Containing Subfractions of Soybean Molasses Induce Enteritis in the Distal Intestine of Atlantic Salmon. Journal of Agricultural and Food Chemistry, 55(6), 2261–2267. https://doi.org/10.1021/jf0626967

Kokou, F., Sarropoulou, E., Cotou, E., Rigos, G., Henry, M., Alexis, M., & Kentouri, M. (2015). Effects of Fish Meal Replacement by a Soybean Protein on Growth, Histology, Selected Immune and Oxidative Status Markers of Gilthead Sea Bream, Sparus aurata. Journal of the World Aquaculture Society, 46(2), 115–128. https://doi.org/10.1111/jwas.12181

Krogdahl, Å., Gajardo, K., Kortner, T. M., Penn, M., Gu, M., Berge, G. M., & Bakke, A. M. (2015). Soya Saponins Induce Enteritis in Atlantic Salmon (Salmo salar L.). Journal of Agricultural and Food Chemistry, 63(15), 3887–3902. https://doi.org/10.1021/jf506242t

Krogdahl, Å., Penn, M., Thorsen, J., Refstie, S., & Bakke, A. M. (2010). Important antinutrients in plant feedstuffs for aquaculture: An update on recent findings regarding responses in salmonids. Aquaculture Research, 41(3), 333–344. https://doi.org/10.1111/j.1365-2109.2009.02426.x

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262

Livingstone, D. R. (2003). Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Revue de Médecine Vétérinaire (France). https://scholar.google.com/scholar_lookup?title=Oxidative+stress+in+aquatic+organisms+in+relation+to+pollution+and+aquaculture&author=Livingstone%2C+D.R.+%28%28Plymouth+Marine+Laboratory+%28Royaume+Uni%29%29%29&publication_year=2003

Olsvik, P. a., Torstensen, B. e., Hemre, G.-I., Sanden, M., & Waagbø, R. (2011). Hepatic oxidative stress in Atlantic salmon (Salmo salar L.) transferred from a diet based on marine feed ingredients to a diet based on plant ingredients. Aquaculture Nutrition, 17(2), e424–e436. https://doi.org/10.1111/j.1365-2095.2010.00778.x

Overturf, K., Welker, T., Barrows, F., Towner, R., Schneider, R., & LaPatra, S. (2013). Variation in Rainbow Trout, Oncorhynchus mykiss, to Biosynthesize Eicosapentaenoic Acid and Docosahexaenoic Acid When Reared on Plant Oil Replacement Feeds. https://pubag.nal.usda.gov/catalog/595974

Panserat, S., Hortopan, G. A., Plagnes-Juan, E., Kolditz, C., Lansard, M., Skiba-Cassy, S., Esquerré, D., Geurden, I., Médale, F., Kaushik, S., & Corraze, G. (2009). Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout (Oncorhynchus mykiss) liver. Aquaculture, 294(1), 123–131. https://doi.org/10.1016/j.aquaculture.2009.05.013

Romarheim, O. H., Øverland, M., Mydland, L. T., Skrede, A., & Landsverk, T. (2011). Bacteria Grown on Natural Gas Prevent Soybean Meal-Induced Enteritis in Atlantic Salmon. The Journal of Nutrition, 141(1), 124–130. https://doi.org/10.3945/jn.110.128900

Silva, P. F., McGurk, C., Knudsen, D. L., Adams, A., Thompson, K. D., & Bron, J. E. (2015). Histological evaluation of soya bean-induced enteritis in Atlantic salmon (Salmo salar L.): Quantitative image analysis vs. semi-quantitative visual scoring. Aquaculture, 445, 42–56. https://doi.org/10.1016/j.aquaculture.2015.04.002

Turchini, G. M., Ng, W.-K., & Tocher, D. R. (Eds.). (2010). Fish Oil Replacement and Alternative Lipid Sources in Aquaculture Feeds. CRC Press. https://doi.org/10.1201/9781439808634

van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13(2), 57–149. https://doi.org/10.1016/S1382-6689(02)00126-6

Venold, F. F., Penn, M. H., Krogdahl, Å., & Overturf, K. (2012). Severity of soybean meal induced distal intestinal inflammation, enterocyte proliferation rate, and fatty acid binding protein (Fabp2) level differ between strains of rainbow trout (Oncorhynchus mykiss). Aquaculture, 364–365, 281–292. https://doi.org/10.1016/j.aquaculture.2012.08.035

Zhang, J.-X., Guo, L.-Y., Feng, L., Jiang, W.-D., Kuang, S.-Y., Liu, Y., Hu, K., Jiang, J., Li, S.-H., Tang, L., & Zhou, X.-Q. (2013). Soybean β-Conglycinin Induces Inflammation and Oxidation and Causes Dysfunction of Intestinal Digestion and Absorption in Fish. PLOS ONE, 8(3), e58115. https://doi.org/10.1371/journal.pone.0058115

Published

2022-10-12

How to Cite

Tasia, T.-Y., Hernández Hernández, H. L., Overturf, K. E., & Powell, M. S. (2022). Comparative analysis of soybean meal effects in commercial strains of rainbow trout Oncorhynchus mykiss. Avances En Nutrición Acuicola, 1(1), 137–155. Retrieved from https://nutricionacuicola.uanl.mx/index.php/acu/article/view/361

Most read articles by the same author(s)

Similar Articles

<< < 2 3 4 5 6 7 

You may also start an advanced similarity search for this article.