Bacteriófagos: Herramientas de control biológico para una acuicultura sostenible

Authors

  • Eduardo Quiroz Guzmán Centro de Investigaciones Biológicas del Noroeste, S.C.
  • Carlos Omar Lomelí-Ortega Centro de Investigaciones Biológicas del Noroeste, S.C.
  • Juan Manuel Martínez Villalobos Universidad Autónoma de Nuevo León

Keywords:

Bacteriófagos, Acuicultura, Fagoterapia, lítico, lisógenos

Abstract

La terapia con fagos, trata infecciones bacterianas con bacteriófagos solos o en combinación con antibióticos tradicionales, se ha demostrado en casos de emergencia en diversos países; sin embargo, para que un bacteriófago sea útil para la terapia, debe aislarse del medio ambiente y demostrar que tiene ciertas características más allá de simplemente lisar cepas patogenas (bacteriana diana). Esto incluyen características deseables tales como un rango de hospedadores relativamente amplio y la capacidad de formar un lisógeno. Algunas de estas variaciones son utilizadas regularmente por algunos grupos de investigación. En esta revisión, describimos (1) los procedimientos de aislamiento y las variaciones que están diseñadas para aislar fagos con rangos de hospedadores más amplios, (2) los procedimientos de caracterización utilizados para mostrar que un fago puede tener utilidad en la terapia con fagos, incluidos algunos de los límites de dicha caracterización y (3) las advertencias de análisis esenciales para obtener genomas de alta calidad, excluyendo candidatos no deseados, evaluando rigurosamente la seguridad de un genoma de fagos y evaluando la contaminación de secuenciación. Este flujo de trabajo se ha desarrollado de acuerdo con los estándares de la comunidad para la secuenciación de alto rendimiento de genomas virales, así como los principios para los fagos ideales utilizados para la terapia. Proponemos estas pautas como un estándar mínimo como nuevos candidatos a fármacos en investigación.

Downloads

Download data is not yet available.

References

Abedon, S.T. (2011). Lysis from without. Bacteriophage 1:46–49.

Ackermann, H. W. (2007). 5500 Phages examined in the electron microscope. Arch. Virol. 152, 227–243.

Adams Michael J., Elliot J. Lefkowitz, Andrew M. Q. King, Balázs Harrach, Robert L. Harrison, Nick J. Knowles, Andrew M. Kropinski, Mart Krupovic, Jens H. Kuhn, Arcady R. Mushegian, Max L. Nibert, Sead Sabanadzovic, Hélène Sanfaçon, Stuart G. Siddell, Peter Simmonds, Arvind Varsani, Francisco Murilo Zerbini, Richard J. Orton, Donald B. Smith, Alexander E. Gorbalenya & Andrew J. Davison. (2017). 50 years of the International Committee on Taxonomy of Viruses: progress and prospects. Arch. Virol. 162, 1441–1446

Alagappan, K.M., B. Deivasigamani, S.T. Somasundaram & S. Kumaran. (2010). Occurrence of Vibrio parahaemolyticus and Its Specific Phages from Shrimp Ponds in East Coast of India. Current microbiology, 61(4), 235-240.

An Sung Kwon, Bong Jo Kang, Soo Youn Jun, Seong Jun Yoon, Jae Hwan Lee, & Sang Hyeon Kang. (2017). Evaluating the effectiveness of Streptococcus parauberis bacteriophage Str-PAP-1 as an environmentally friendly alternative to antibiotics for aquaculture. Aquaculture. 468 (1) 464-470.

Baek, M.S., Y.S. Hwang & S. Choi. (2013). Mixture of Edwardsiella tarda specific Bacteriophage and Bacillus subtilis KM-1enhanced bactericidal activity against Edwardsiella tarda. J. Fish Pathol. 26(3), 185-191.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology: a journal of computational molecular cell biology, 19(5), 455–477.

Bastian Barker, Rasmussen, Panos G. Kalatzis, Mathias Middelboe, & LoneGram. (2019). Combining probiotic Phaeobacter inhibens DSM17395 and broad-host-range vibriophage KVP40 against fish pathogenic vibrios. Aquaculture. 513, 734415.

Besemer, J., & Borodovsky, M. (2005). GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic acids research, 33(Web Server issue), W451–W454.

Binetti, A.G., Quiberoni, A. & Reinheimer, J.A., (2002). Phage adsorption to Streptococcus thermophilus. Influence of environmental factors and characterization of cell-receptors. Food Res. Int., 35(1), 73–83.

Borody, T.J. & A. Khoruts. 2012. Fecal microbiota transplantation and emerging applications. Nat. Rev. Gastroenterol. Hepatol. 9, 88–96.

Breitbart, M. (2012). Marine viruses: truth or dare. Ann. Rev. Mar. Sci. 4: 425-448.

Breitbart, M. 2012. Marine viruses: truth or dare. Ann. Rev. Mar. Sci. 4: 425-­448.

Brian P Alcock, Amogelang R Raphenya, Tammy T Y Lau, Kara K Tsang, Mégane Bouchard, Arman Edalatmand, William Huynh, Anna-Lisa V Nguyen, Annie A Cheng, Sihan Liu, Sally Y Min, Anatoly Miroshnichenko, Hiu-Ki Tran, Rafik E Werfalli, Jalees A Nasir, Martins Oloni, David J Speicher, Alexandra Florescu, Bhavya Singh, Mateusz Faltyn, Anastasia Hernandez-Koutoucheva, Arjun N Sharma, Emily Bordeleau, Andrew C Pawlowski, Haley L Zubyk, Damion Dooley, Emma Griffiths, Finlay Maguire, Geoff L Winsor, Robert G Beiko, Fiona S L Brinkman, William W L Hsiao, Gary V Domselaar & Andrew G McArthur. (2020). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic acids research, 48(D1), D517–D525.

Buckingham SD. (2010). Next Generation Data Explosion. Lab Times.;1:52–3.

Canchaya C, Fournous G, Chibani-Chennoufi S, Dilmann ML & Brussow H. (2003) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6: 417-424. 10.1016/S1369-5274(03)00086-9

Chen, L., Yang, J., Yu, J., Yao, Z., Sun, L., Shen, Y., & Jin, Q. (2005). VFDB: a reference database for bacterial virulence factors. Nucleic acids research, 33(Database issue), D325–D328.

Chibani-­Chennoufi, S., A. Bruttin, M.L. Dillmann & H. Brüssow. 2004. Phage-­host interaction: an ecological perspective. Journal of bacteriology, 186(12): 3677-­ 3686.

Comeau, A.M., A.M. Chan & C.A. Suttle. (2006). Genetic richness of vibriophages isolated in a coastal environment. Environ. Microbiol. 8, 1164–1176.

Delcher, A. L., Bratke, K. A., Powers, E. C., & Salzberg, S. L. (2007). Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics (Oxford, England), 23(6), 673–679.

Dion, M.B., Oechslin, F. & Moineau, S. (2020). Phage diversity, genomics and phylogeny. Nat Rev Microbiol 18, 125–138 (2020). https://doi.org/10.1038/s41579-019-0311-5

Doss, J., Culbertson, K., Hahn, D., Camacho, J. & Barekzi, N. (2017). A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms. Viruses, 9, 50.

Doss, J., Culbertson, K., Hahn, D., Camacho, J. & Barekzi, N. 2017. A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms. Viruses, 9, 50.

Drulis-Kawa, Z., G. Majkowska-­Skrobek, B. Maciejewska, A.S. Delattre & R. Lavigne. 2012. Learning from bacteriophages—advantages and limitations of phage and phage-­encoded protein applications. Curr. Protein Pept. Sci. 13, 699– 722.

Drulis-Kawa, Z., G. Majkowska-Skrobek, B. Maciejewska, A.S. Delattre & R. Lavigne. (2012). Learning from bacteriophages—advantages and limitations of phage and phage-encoded protein applications. Curr. Protein Pept. Sci. 13, 699– 722.

Egan, S. & M. Gardiner. 2016. Microbial dysbiosis: rethinking disease in marine ecosystems. Frontiers in microbiology, 7, 991.

Faith, J.J., F.E. Rey, D. O'donnell, M. Karlsson, N.P. McNulty, G. Kallstrom, A.L. Goodman & J.I. Gordon. 2010. Creating and characterizing communities of human gut microbes in gnotobiotic mice. The ISME journal, 4(9), 1094.

FAO (2019a). A Quarterly Update on World Seafood Markets April 2019 Issue,with January–December 2018 Statistics. Available online at: http://www.fao.org/3/ca5307en/ca5307en.pdf

FAO(2019b). The State of World Fisheries and Aquaculture 2018 (SOFIA). Available online at: http://www.fao.org/3/i9540en/I9540EN.pdf

Fennema, O.R. (1996) Food Chemistry, 3rd edn. New York, NY, USA: Marcel Dekker, Inc.

Flores, V., C. Fernández & M. Medina, (2019). Aislamiento y evaluación de la efectividad de bacteriófagos aislados de ambiente marino y su efecto en el control del crecimiento bacteriano. Boletín Instituto del Mar de Perú 34 (1): 151-164.

Forterre, P. & D. Prangishvili. 2009. The origin of viruses. Research in microbiology, 160(7): 466-472.

Friedman SD, Genthner FJ, Gentry J, Sobsey MD & Vinje J. (2009). Gene mapping and phylogenetic analysis of the complete genome from 30 single-stranded RNA male-specific coliphages (family Leviviridae) J Virol.;83:11233–11243.

Gill, J. J., Sabour, P., & Griffiths, M. (2010). “Practical and theoretical considerations for the use of bacteriophages in food systems,” in Bacteriophages in the Control of Food-and Waterborne Pathogens, eds P. Sabour and M. Griffiths (Washington, DC: ASM Press), 217–235.

Gon Choudhury, T., V.T. Nagaraju, S. Gita, A. Paria & J. Parhi. 2017. Advances in Bacteriophage Research for Bacterial Disease Control in Aquaculture, Reviews in Fisheries Science & Aquaculture, 1-­13

Gordillo Altamirano, F., Forsyth, J.H., Patwa, R. Kostoulias, X., Trim, M, Subedi, D., Archer, S.K., Morris, F.C., Oliveira, C., Kielty, L., Korneev, D., O’Bryan, M.K., Lithgow, T.J., Peleg, A.Y. & Barr, J.J. (2021). Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat Microbiol 6, 157–161 Huang, C., Y. Zhang & N. Jiao. (2010). Phage resistance of a marine bacterium, Roseobacter denitrificans. Curr. Microbiol., 61:141–47

Hagens S & Loessner MJ. (2010). Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol.;11:58–68. Monteiro R, Pires DP, Costa AR & Azeredo J. (2019). Phage therapy: going temperate? Trends Microbiol 27:368–378.

Hanlon, G.W. 2007. Bacteriophages: an appraisal of their role in the treatment of bacterial infections. International Journal of Antimicrobial Agents, 30: 118-128.

Hongyu Ren, Zhen Li, Yongping Xu, Lili Wang & Xiaoyu Li. (2019). Protective effectiveness of feeding phage cocktails in controlling Vibrio parahaemolyticus infection of sea cucumber Apostichopus japonicas. Aquaculture. 530, 322-329.

Hyatt, D., Chen, G. L., Locascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC bioinformatics, 11, 119.

Hyman P, & Abedon ST. (2010). Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 70: 217–248.

Jalili, V., Afgan, E., Gu, Q., Clements, D., Blankenberg, D., Goecks, J., Taylor, J., & Nekrutenko, A. (2020). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic acids research, 48(W1), W395–W402.

Jepson, C.D., & March, J.B. (2004) Bacteriophage lambda is a highly stable DNA vaccine delivery vehicle. Vaccine 22:2413–2419.

Jin Woo Juna, Jee Eun Hanb, Kathy F.J. Tangb, Donald V. Lightnerb, Jaehoon Kimc,Sang Won Seoc, & Se Chang Parka. (2016). Potential application of bacteriophage pVp-1: Agent combatingVibrioparahaemolyticusstrains associated with acute hepatopancreaticnecrosis disease (AHPND) in shrimp. Aquaculture. 457 (20) 100-103.

Junkai Zhu, Mengya Xu, Qiqin Liu, Dengfeng Li, Rui Yang & Haimin Chen. (2021). Bacteriophage therapy on the conchocelis of Pyropia haitanensis (Rhodophyta) infected by Vibrio mediterranei 117-T6. Aquaculture 531 735853

Kalatzis, P.G., R. Bastías, C. Kokkari & P. Katharios. (2016). Isolation and Characterization of Two Lytic Bacteriophages, φSt2 and φGrn1; Phage Therapy Application for Biological Control of Vibrio alginolyticus in Aquaculture Live Feeds. PLoS ONE 11(3): e0151101.

Kauffman Kathryn M , Fatima A Hussain, Joy Yang, Philip Arevalo, Julia M Brown, William K Chang, David VanInsberghe, Joseph Elsherbini, Radhey S Sharma, Michael B Cutler, Libusha Kelly & Martin F Polz. (2018). A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554, 118–122.

Khan-Mirzaei M. & A.S. Nilsson. (2015). Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS One, 10(3):e0118557.

Kim, H. J., Jun, J. W., Giri, S. S., Chi, C., Yun, S., Kim, S. G., & Park, S. C. (2018). Complete Genome Sequence of a Bacteriophage, pVco-5, That infects Vibrio coralliilyticus, which causes bacillary necrosis in Pacific Oyster (Crassostrea gigas) Larvae. Genome announcements, 6(2), e01143-17.

Kim, J.S., A. Hosseindoust, S.H. Lee, Y.H. Choi, M.J. Kim, J.H. Lee, I.K. Kwon, & B.J. Chae. (2017). Bacteriophage cocktail and multi-strain probiotics in the feed for weanling pigs: effects on intestine morphology and targeted intestinal coliforms and Clostridium. Animal, 11(1), 45-53.

Kim, K.H., S.L. Ingale, J.S. Kim, S.H. Lee, J.H. Lee, I.K. Kwon & B.J. Chae. (2014). Bacteriophage and probiotics both enhance the performance of growing pigs but bacteriophage are more effective. Anim. Feed Sci. Tech. 196, 88-95.

Knies, J. L., Kingsolver, J. G., & Burch, C. L. (2009). Hotter is better and broader: thermal sensitivity of fitness in a population of bacteriophages. The American Naturalist, 173(4), 419-430.

Krylov, V. N. (2001). Russian Journal of Genetics, 37(7), 715–730.

Kumarappan Alagappan, Valliappan Karuppiah, & Balaraman Deivasigamani. (2016). Protective effect of phages on experimental V. parahaemolyticus infection and immune response in shrimp (Fabricius, 1798). Aquaculture. 453 (20), 86-92

Kutter, E. & A. Sulakvelidze. (2004). Bacteriophages: biology and applications. CRC Press. Florida, EEUU. 485 p.

Kutter, E. & A. Sulakvelidze. 2004. Bacteriophages: biology and applications. CRC Press. Florida, EEUU. 485 p.

Labrie, S.J., J.E. Samson & S. Moineau. (2010). Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327

Ladner Jason T, Brett Beitzel, Patrick S G Chain, Matthew G Davenport, Eric F Donaldson, Matthew Frieman, Jeffrey R Kugelman, Jens H Kuhn, Jules O'Rear, Pardis C Sabeti, David E Wentworth, Michael R Wiley, Guo-Yun Yu, Threat Characterization Consortium; Shanmuga Sozhamannan, Christopher Bradburne & Gustavo Palacios. (2014). Standards for sequencing viral genomes in the era of high-throughput sequencing. MBio , 5, e01360-14

Lenski, R.E. & B.R. Levin. (1985). Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. American Naturalist, 585-602.

Lenski, R.E. & B.R. Levin. 1985. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. American Naturalist, 585-­602.

Li, Z., J. Zhang, X. Li, X. Wang, Z. Cao, L. Wang, & Y. Xu. (2016). Efficiency of a bacteriophage in controlling Vibrio infection in the juvenile sea cucumber Apostichopus japonicus. Aquaculture, 451, 345-352.

Li, Z., Song, Y., Wang, X., Zhang, J., Wang, L., Li, X., & Xu, Y. (2017). Using Phage PSM‐1 to Control Shewanella marisflavi Infection in Juvenile Sea Cucumber, Apostichopus japonicus. Journal of the World Aquaculture Society, 48(1), 113-121.

Loman Nicholas J , Raju V Misra, Timothy J Dallman, Chrystala Constantinidou, Saheer E Gharbia, John Wain, Mark J Pallen. (2012). Performance comparison of benchtop highthroughput sequencing platforms. Nat Biotechnol 30:434–439.

Lomelí‐Ortega, C. O., Martínez‐Sández, A. J., Barajas‐Sandoval, D. R., Reyes, A. G., Magallón‐Barajas, F., Veyrand‐Quíros, B., & Quiroz‐Guzmán, E. (2021). Isolation and characterization of vibriophage vB_Vc_SrVc9: an effective agent in preventing Vibrio campbellii infections in brine shrimp nauplii (Artemia franciscana). Journal of Applied Microbiology, 131(1), 36-49.

Lomelí-Ortega, C.O. & S.F. Martínez-Díaz. (2014). Phage therapy against Vibrio parahaemolyticus infection in the whiteleg shrimp (Litopenaeus vannamei) larvae. Aquaculture, 434, 208-211.

Marietto-Gonçalves, G.A., E.T. Lima, T.C. Donato, T.S. Rocha, L.E. Cisneros-Álvarez, J. Lopes-Sequeira & R.L. Andreatti-Filho. (2011). Eradication of Salmonella typhimurium in broiler chicks by combined use of P22 bacteriophage and probiotic. Int. J. Microbiol. Res. 3(2), 4-9.

Martinez-Diaz, S. F. & A. Hipólito-Morales. (2013). Efficacy of phage therapy to prevent mortality during the vibriosis of brine shrimp. Aquaculture, 400, 120-124.

Matsuoka, S., Hashizume, T., Kanzaki, H., Iwamoto, E., Park, S. C., Yoshida, T., & Nakai, T. (2007). Phage therapy against β-hemolytic streptococcicosis of Japanese flounder Paralichthys olivaceus.

Michniewski S., Branko Rihtman, Ryan Cook, Michael A. Jones, William H. Wilson, David J. Scanlan & Andrew Millard. (2021). A new family of “megaphages” abundant in the marine environment. ISME COMMUN. 1, 58 Microbiol., 5: 801-812.

Middelboe, M. & P. Lyck. (2002). Regeneration of dissolved organic matter by viral lysis in marine microbial communities. Aquat. Microb. Ecol., 27:187–94

Middelboe, M. & P. Lyck. 2002. Regeneration of dissolved organic matter by viral lysis in marine microbial communities. Aquat. Microb. Ecol., 27:187–94

Middelboe, M., K. Holmfeldt, L. Riemann, O. Nybroe & J. Haaber. (2009). Bacteriophages drive strain diversification in a marine Flavobacterium: implications for phage resistance and physiological properties. Environ. Microbiol., 11:1971–82

Moïra B. Dion, Frank Oechslin and Sylvain Moineau. (2020). Phage diversity, genomics and phylogeny. Nat Rev Microbiol 18, 125–138

Obeng, N., A.A. Pratama, & J.D. van Elsas. (2016). The significance of mutualistic phages for bacterial ecology and evolution. Trends in microbiology, 24(6): 440- 449.

Pal, S. 2015. Phage Therapy an alternate disease control in Aquaculture: A review on recent advancements. IOSR Journal of Agriculture and Veterinary Science. 8(9): 68­81.

Patil, J.R., S.N. Desai, P. Roy, M. Durgaiah, R.S. Saravanan, & A. Vipra. (2014). Simulated hatchery system to assess bacteriophage efficacy against Vibrio harveyi. Dis. Aquat. Organ. 112: 113–119

Pereira, C., Moreirinha, C., Teles, L., Rocha, R. J., Calado, R., Romalde, J. L., & Almeida, A. (2017). Application of phage therapy during bivalve depuration improves Escherichia coli decontamination. Food microbiology, 61, 102-112.

Philipson, C. W., Voegtly, L. J., Lueder, M. R., Long, K. A., Rice, G. K., Frey, K. G., Biswas, B., Cer, R. Z., Hamilton, T., & Bishop-Lilly, K. A. (2018). Characterizing Phage Genomes for Therapeutic Applications. Viruses, 10(4), 188.

Pirisi, A. (2000) Phage therapy – advantages over antibiotics? The Lancet 356: 1418.

Pope, W. H., Haase-Pettingell, C., & King, J. (2004). Protein folding failure sets high-temperature limit on growth of phage P22 in Salmonella enterica serovar Typhimurium. Applied and environmental microbiology, 70(8), 4840-4847.

Quiroz-Guzmán Eduardo, Peña-Rodríguez Alberto, Vázquez-Juárez Ricardo, Barajas-Sandoval Diana R., Balcázar José L. & Martínez-Días Sergio F. (2018). Bacteriophage cocktails as an environmentally-friendly approach to prevent Vibrio parahaemolyticus and Vibrio harveyi infections in brine shrimp (Artemia franciscana) production. Aquaculture. 492. (1), 273-279.

Quiróz-Guzman, E. (2013). Control de Vibrio parahaemolyticus y Vibrio harveyi durante la producción de nauplios de Artemia franciscana mediante un consorcio de bacterias probióticas y fagos. Tesis de doctorado. CICIMAR-IPN. México. 198 p.

Rakhuba, D.V., E.I. Kolomiets, D.E Szwajcer & G.I. Novik. (2010). Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Polish J Microbiol. 59: 145–155.

Raya, R.R. & E.M. Hébert. (2009). Isolation of phage via induction of lysogens, p 23–32. En: Clokie MRJ, Kropinski AM (ed), Bacteriophages: methods and protocols, vol 1. Isolation, characterization, and interactions. Reino Unido. 313 p.

Roberfroid, M., G.R. Gibson, L. Hoyles, A.L. McCartney, R. Rastall, I. Rowland, D. Wolvers, B. Watzl, H. Szajewska, B. Stahl, F. Guarner, F. Respondek, K. Whelan, V. Coxam, MJ. Davicco, L. Léotoing, Y. Wittrant, N. Delzenne, P.D. Cani, A.M. Neyrinck, & A. Meheust. 2010. Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(S2), S1-­S63.

Roossinck, M.J. 2015. Move over bacteria! Viruses make their mark as mutualistic microbial symbionts. J Virol., 89:6532–6535

Rørbo, N., Rønneseth, A., Kalatzis, P. G., Rasmussen, B. B., Engell-Sørensen, K., Kleppen, H. P., & Middelboe, M. (2018). Exploring the effect of phage therapy in preventing Vibrio anguillarum infections in cod and turbot larvae. Antibiotics, 7(2), 42.

Salazar-Llanos, C. V., (2018). Aislamiento y determinación del rango de hospedero de bacteriófagos de Salmonella spp. Memoria Profesional. Universidad de Chile, Santiago, Chile: 1-26 p.

Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics (Oxford, England), 30(14), 2068–2069.

Sheth, R.U., V. Cabral, S.P. Chen, & H.H. Wang. 2016. Manipulating bacterial communities by in situ microbiome engineering. Trends in Genetics, 32(4), 189-200.

Silva, Y. J., Costa, L., Pereira, C., Cunha, Â., Calado, R., Gomes, N. C., & Almeida, A. (2014b). Influence of environmental variables in the efficiency of phage therapy in aquaculture. Microbial biotechnology, 7(5), 401-413.

Silva, Y.J., L. Costa, C. Pereira, C. Mateus, A. Cunha, R. Calado, N.C. Gomes, M.A. Pardo, I. Hernandez & A. Almeida. (2014a). Phage therapy as an approach to prevent Vibrio anguillarum infections in fish larvae production. PloS ONE, 9 (12): e114197.

Slawomir Michniewski, Branko Rihtman, Ryan Cook, Michael A. Jones, William H. Wilson, David J. Scanlan & Andrew Millard. (2021) A new family of “megaphages” abundant in the marine environment. ISME COMMUN. 1, 58

Stalin, N. & P. Srinivasan. 2016. Characterization of Vibrio parahaemolyticus and its specific phage from shrimp pond in Palk Strait, South East coast of India. Biologicals, 44(6), 526-533.

Stoddard, L.I., J.B. Martiny & M.F. Marston. (2007). Selection and characterization of cyanophage resistance in marine Synechococcus strains. Appl. Environ. Microbiol., 73(17): 5516-5522.Suttle, C.A. 2005. Viruses in the sea. Nature, 437(7057): 356-361.

Sullivan MB, Coleman ML, Quinlivan V, Rosenkrantz JE, Defrancesco AS, Tan G, Fu R, Lee JA, Waterbury JB, Bielawski JP, Chisholm SW. (2008). Portal protein diversity and phage ecology. Environ Microbiol. 10(10):2810-23.

Suttle, C. A. (2005). Viruses in the sea. Nature 437, 356–361

Suttle, C.A. (2007). Marine viruses — major players in the global ecosystem. Nature Rev.

Tuajuanda C. Jordan, Sandra H. Burnett, Susan Carson, Steven M. Caruso, Kari Clase, Randall J. DeJong, John J. Dennehy, , Dee R. Denver, David Dunbar, Sarah C. R. Elgin, Ann M. Findley, Chris R. Gissendanner, Urszula P. Golebiewska, Nancy Guild, Grant A. Hartzog, Wendy H. Grillo, Gail P. Hollowell, Lee E. Hughes, Allison Johnson, Rodney A. King, Lynn O. Lewis, Wei Li, Frank Rosenzweig, Michael R. Rubin, Margaret S. Saha, James Sandoz, Christopher D. Shaffer, Barbara Taylor, Louise Temple, Edwin Vazquez, Vassie C. Ware, Lucia P. Barker, Kevin W. Bradley, Deborah Jacobs-Sera, Welkin H. Pope, Daniel A. Russell, Steven G. Cresawn, David Lopatto, Cheryl P. Bailey & Graham F. (2014). A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students. mBio 5(1):e01051-13.

Tynecki Piotr, Arkadiusz Guziński, Joanna Kazimierczak, Michał Jadczuk, Jarosław Dastych & Agnieszka Onisko. (2020). PhageAI - Bacteriophage Life Cycle Recognition with Machine Learning and Natural Language Processing. bioRxiv.

Veyrand-Quirós B. Gómez-Gil B., Lomeli-Ortega C.O., Escobedo-Fregoso C., Millard A.D., Tovar-Ramírez D., Balcázar J.L., & Quiroz-Guzmán E. (2020). Use of bacteriophage vB_Pd_PDCC-1 as biological control agent of Photobacterium damselae subsp. damselae during hatching of longfin yellowtail (Seriola rivoliana) eggs. J ApplMicrobiol 129:1497–1510.

Vorobey, E.S., O.S. Voronkova & A.I. Vinnikov. (2017). Correction of vaginal dysbiosis in mice caused by a film-forming strain Staphylococcus aureus, using bacteriophages and probiotics. Regul. Mech. Biosyst. 8(2), 252-258.

Walakira, J. K., (2008). Discovery, isolation and characterization of bacteriophages specific for Edwardsiella ictaluri. Tesis de Maestría. Auburn University, Alabama, USA 80 p.

Wang, Y., M. Barton, L. Elliott, X. Li, S. Abraham, M. O'Dea, & J. Munro, J. (2017). Bacteriophage therapy for the control of Vibrio harveyi in greenlip abalone (Haliotis laevigata). Aquaculture 473, 251-258.

Wang, Y.B., J.R. Li & J. Lin. (2008). Probiotics in aquaculture: Challenges and outlook. Aquaculture, 281: 1-4.

Weinbauer, M.G. & P. Peduzzi. (1995). Effect of virus-rich high molecular weight concentrates of seawater on the dynamics of dissolved amino acids and carbohydrates. Marine ecology progress series. Oldendorf, 127(1): 245-253.

Wichels A, Biel SS, Gelderblom HR, Brinkhoff T, Muyzer G & Schutt CH (1998) Bacteriophage diversity in the North Sea. Appl Environ Microbiol 64:4128–4133

Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS computational biology, 13(6), e1005595.

Wittebole, X., S. De Roock & S.M. Opal. 2014. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens, Virulence, 5:1, 226-­235.

Wittebole, X., S. De Roock & S.M. Opal. 2014. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens, Virulence, 5:1, 226-­235.

Woo, J. & J. Ahn. (2014). Assessment of synergistic combination potential of probiotic and bacteriophage against antibiotic-resistant Staphylococcus aureus exposed to simulated intestinal conditions. Arch Microbiol. 196(10), 719-727.

Wu Liting, Yuan Tian, Pang Maoda, Yang Zhenquan, Bao Hongduo, Shou Yan, Sun Lichang, Wang Ran & Zhang Hui. (2021). A novel vibriophage vB_VhaS_PcB-1G capable of inhibiting virulent Vibrio harveyi pathogen. Aquaculture 542, 736854.

Yanhui Wang, Mary Barton, Lisa Elliott, Xiaoxu Li, Sam Abraham, Mark O' Dea, & James Munro. (2017). Bacteriophage therapy for the control of Vibrio harveyi in greenlip abalone (Haliotis laevigata). 473 (20), 251-258.

Yolanda J. Silva, Catarina Moreirinha, Carla Pereira, Liliana Costa, Rui J. M. Rocha, Ángela Cunha, Newton C. M. Gomes, Ricardo Calado, & Adelaide Almeida. (2016). Biological control of Aeromonas salmonicida infection in juvenile Senegalese sole (Solea senegalensis) with Phage AS-A. Aquaculture. 450 (1) 225-233.

Zerbino D. R. (2010). Using the Velvet de novo assembler for short-read sequencing technologies. Current protocols in bioinformatics, Chapter 11, Unit–11.5.

Zhang, J., Z. Cao, Z. Li, L. Wang, H. Li, F. Wu, L. Jin, X. Li, S. Li & Y. Xu. (2015). Effect of bacteriophages on Vibrio alginolyticus infection in the sea cucumber, Apostichopus japonicus (Selenka). Journal of the World Aquaculture Society, 46(2), 149-158.

Zhen Li, Hongyu Ren, Qiang Li, Bilal Murtaz, Xiaoyu Li, Jiancheng Zhang, & Yongping Xu. (2020). Exploring the effects of phage cocktails in preventing Vibrio infections in juvenile sea cucumber (Apostichopus japonicus) farming. Aquaculture. 515, 734599.

Published

2022-10-12

How to Cite

Quiroz Guzmán , E., Lomelí-Ortega, C. O., & Martínez Villalobos , J. M. (2022). Bacteriófagos: Herramientas de control biológico para una acuicultura sostenible . Avances En Nutrición Acuicola, 1(1), 71–112. Retrieved from https://nutricionacuicola.uanl.mx/index.php/acu/article/view/358