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Abstract 

 

Shrimp is one of the most cultured crustacean worldwide due to its high protein and nutrient content. At the same time 

shrimp aquaculture faces a huge challenge in controlling disease outbreaks. The extensive use of antibiotics to combat 

the infectious organisms has led to the emergence of antibiotic resistance which is a huge threat to humans and other 

living forms. Therefore, a more environment friendly treatment strategy should be devised. One such treatment option 

is the use of biopolymers such as polyhydroxyalkanoates (PHAs). The most widely used PHA is the anti-infective 

poly-β-hydroxybutyrate which can be fermented into immune stimulating short chain fatty acids by host bacteria or 

digestive enzymes. PHB produced by marine microorganisms are widely studied and considered to be a good source 

of PHB for industrial use. PHB has been found to possess multiple benefits to shrimp health which includes immune 

stimulation, antibacterial properties, increased secretion of digestive enzymes and growth promotion. Moreover, PHB-

diet positively influences the gut microbiome of shrimp, therefore, promoting the overall health and growth. 
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Introduction 

 

Industrial shrimp monocultures are more prone to infectious diseases that have resulted in complete 

loss of farm shrimp populations (Selvin, 2010). Disease outbreaks in shrimp aquaculture has 

become a big hurdle which has stunted the growth and have resulted in the collapse of many shrimp 

aquaculture industries, irrecoverably (Asche et al., 2021). Litopenaeus vannamei (Boone, 1931) is 

a chief commercial shrimp variety that has been farmed worldwide (Wang et al., 2015) because of 

its disease tolerance, adaptability to different environments and rapid growth (Xu and Pan 2012; 

Cui et al., 2016). Intensive culture practices have resulted in the outbreak of several infectious 

diseases that have culminated into mass mortality of farmed shrimp in aquaculture settings (Kumar 

et al., 2015; Joseph et al., 2015).  

It has been documented by many studies that extensive use of antibiotics in shrimp farms 

can result in the development of antimicrobial resistance and these microorganisms can infect 

humans and animals (Wegener et al., 1999; Willis 2000). Therefore, antibiotics are no longer a 

solution for sustainable shrimp farming and other alternatives needs to be developed. Short chain 

fatty acids (SCFA) produced by bacteria following fermentation have been identified to possess 

many health benefits including resistance to infectious diseases and being biological and eco-

friendly makes them ideal solution for sustainable aquaculture (Weitkunat et al., 2015; 

Dobrowolska et al., 2016). However, they are water-soluble and cannot be used directly in rearing 

systems due to poor intake of the compound by aquatic animals (De Schryver et al., 2010). Poly-

β-hydroxybutyrate (PHB) is a water insoluble biodegradable polymer which can be digested by 

intestinal pH into monomeric forms like β-hydroxybutyric acid, a SCFA (De Schryver et al., 2010). 

This makes PHB a suitable chemical that can act as a precursor for SCFA and can be up taken by 

aquatic animals effectively. 

PHB has been identified as one of the promising alternatives for antibiotics in shrimp 

aquaculture by several researchers (Laranja et al., 2014; Laranja et al., 2017; Situmorang et al., 

2020). PHB has been found to possess multiple benefits to shrimp health and this includes immune 

stimulation, antibacterial properties, increased secretion of digestive enzymes and growth 

promotion (Duan et al., 2017). This review discusses the sources of PHB and their degradation 

inside the host, with special emphasis on the beneficial role of PHB in shrimp disease management. 
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Biopolymers and PHB  

Several microorganisms store their carbon and energy in the form of simple 

macromolecules in the presence of excess carbon and absence of sufficient amounts of nitrogen. 

Such structurally simple polymers as known as polyhydroxyalkanoates (PHAs). PHAs can be 

present up to 90% of the dry weight in the form of discrete granules (Anderson and Dawes, 1990; 

Defoirdt et al., 2009). The source of carbon and the bacterial strain determines the chemical 

composition of PHAs (Simon‐Colin et al., 2008). Classification of PHAs are based on the number 

of carbons in the monomers. Monomers containing three to five carbons such as in 

polyhydroxybutyrate (PHB) and hydroxyvalerate (PHV) are called short-side-chain PHA (scl-

PHA), while those containing six to sixteen hydroxyl fatty acids or aliphatic carbon sources are 

called medium-side-chain PHA (mcl-PHA) (Matsusaki et al., 1998; Wu et al., 2003; Tian et al., 

2005; Chien et al., 2007).  

PHAs have a multitude of applications such as drug delivery agents, nutritional 

supplements, bioplastics, photographic materials, drugs, medical implants and fine chemicals (Orts 

et al., 2008; Tokiwa & Calabia, 2008; Sudesh & Iwata, 2008; Chen & Wu, 2005a; Chen & Wu, 

2005b; Chen, 2009). Due to the biocompatible and biodegradable nature, PHAs are widely used as 

bioplastics (non-petroleum based plastics) (Chien et al., 2007). Bacterial PHAs are studied by 

polymer experts, microbiologists, chemists, biochemists as well as medical researchers (Chen, 

2009) due to their immense applications.  Microbial PHA producers have been isolated from the 

waste outlet of various treatment facilities. Microorganisms like Agrobacterium, Actinobacillus, 

Sphaerotilius, Azotobacter, Rhodobacter etc. are known for their ability to utilize organic waste for 

the production of PHA (Madison & Huisman, 1999; López-Cortés et al., 2008).  

One of the most studied PHAs, is the poly-β-hydroxybutyrate (PHB) (Lee, 1996; Defoirdt 

et al., 2009). PHB is a simple linear polymer of D(-)-3-hydroxybutyric acid, first discovered in 

1923 by Maurice Lemoigne, a French scientist. PHB was first identified in an aerobic spore-

forming Bacillus “M” strain (Laranja & Bossier 2020). Apart from bacterial synthesis, which is the 

most commonly used production strategy (Lenz & Marchessault, 2005), PHB can also be obtained 

chemically by synthetic polymerization via ring opening (Vroman & Tighzert, 2009), naturally 

from natural/transgenic plants (Mousavioun, George & Doherty, 2012). Bacteria such as Bacillus, 

Pseudomonas, Alcaligenes, Rhizobium etc. store energy and carbon in the form of PHB when 

phosphorus, nitrogen or oxygen are present in insufficient quantities while, carbon is in excess 
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amount (Anderson and Dawes 1990; Laranja & Bossier 2020). PHB in its native form is amorphous 

and after cell lysis, a partially crystallized form is released (Gowda & Shivakumar, 2019). 

Application of PHB in the polymer industry is limited due to its lo thermal stability and brittle 

nature. Instead, its copolymers like 3-Hydroxyvalerate and 3-Hydroxybutyrate are used to make 

films, disposable food service ware and compost bags, due to greater toughness and flexibility.  

The monomers of PHB, i.e., 3-hydroxybuyrate acts as an efficient biocontrol agent, therefore, PHB 

have various biological applications (Gowda & Shivakumar, 2019). Research suggests the PHB 

aids in protecting host from various infections (Gowda & Shivakumar, 2019).   

The anti-infective nature of PHB could be due to its hydrolysis into 3-hydroxy butyric acid 

(Ray et al., 2017) in the host gut. The resulting SCFAs exhibits anti- pathogenic action based on 

the physiological condition of the organisms and physicochemical conditions of the external 

environment. However, the exact mechanism is still unclear (Ricke, 2003). Hence, SCFAs can be 

useful in treating microbial infections in aquaculture (Defoirdt et al., 2007).  

 

Marine PHB-producers  

The increased production of non-biodegradable products has caused immense harm to the 

environment, therefore, there is huge interest in the production of biodegradable polymers through 

biological methods (Patnaik, 2006; Arun et al., 2009). Biodegradable PHBs produced by marine 

microbes (Mohanrasu et al., 2021), especially bacteria and archaea (Kavitha, Rengasamy & 

Inbakandan, 2018) find a wide variety of industrial as well as medical applications (Mohanrasu et 

al., 2021). The endosymbionts of a marine sponge Callyspongia diffusa was studied for the 

production of PHB and it was found that Bacillus subtilis MSBN17 produced high amounts of PHB 

when pulp industry waste and tamarind kernel powder were provided as major substrate and co-

substrate respectively (Sathiyanarayanan et al., 2013). Vibrio natriegens isolated from marine 

sediments was capable of producing PHB and had a short generation time of 9.8 min, which makes 

it a best candidate for industrial PHB production (Chien et al., 2007).  

Bacterium Streptomyces lividans and marine Bacillus subtilis produced low molecular 

weight PHB (14 000 Da) along with polyphosphate and calcium ions (Reusch, 1999 Kavitha, 

Rengasamy & Inbakandan, 2018). The bacterium Ochrobactrum intermedium isolated from oil 

waste contaminated sea water at Gulf of Mannar, Tamil Nadu, India, was capable of producing 

PHB by utilizing hydrocarbon wastes (Mahendhran et al., 2018). A study from Tamil Nadu, India 

reported eleven naturally PHB producing cyanobacterial species which includes Phormidium sp. 
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(VIT-BMN3) (Gopi, Balaji & Muthuvelan, 2014). The marine sediment isolate Vibrio azureus 

BTKB33 produced 0.21 g/L PHB under submerged fermentation, which was highest among a total 

of 828 isolates (Sasidharan, Bhat & Chandrasekaran, 2015). Another PHB producer Vibrio 

proteolyticus strain was isolated from a marine environment in Korea (Hong et al., 2019). PHB- 

producer Pseudodonghicola xiamenensis, which isolated from the Red Sea in Saudi Arabia could 

produce higher amount of PHB in a cost effective manner when supplemented with 4% (w/v) date 

syrup (Mostafa et al., 2020a). A moderately halophilic Vibrio harveyi MCCB 284, isolated from 

tunicate Phallusia nigra, efficiently utilized glycerol for PHB accumulation up to 72% cell dry 

weight (Mohandas et al., 2017). According to a study, it was found that PHB-producing bacteria 

such as Erythrobacter aquimaris could be isolated from marine mangrove rhizosphere (Mostafa et 

al., 2020b) and hence, such rhizospheres should be further explored for commercially useful PHB-

producers. 

 

PHB degradation and anti-pathogenic effect  

 

PHAs can undergo chemical decomposition as well as enzymatic degradation (Defoirdt et 

al., 2009). PHBs being polymers of repeating SCFA monomers, its degradation in host gut results 

in the production of SCFAs which provide beneficial effects to the host (Gowda & Shivakumar, 

2019) (Fig 1). PHB provided to the host through feed or bioencapsulation technique is hydrolyzed 

by gastric digestive enzymes of the host and/ or PHB depolymerase activity of gut microbiome 

(Kiran et al., 2016; Liu et al., 2010; Laranja & Bossier 2020; Defoirdt et al., 2007). Low pH of the 

host gut may also be responsible for the release of β-hydroxybutyrate SCFAs, as revealed by a 

study on conducted on juvenile seabass fed with PHB-diet (De Schryver et al., 2010; Laranja & 

Bossier 2020). Exposure to β-hydroxy-SCFAs could impact the cellular status of the such as 

lowering of cytoplasmic pH which makes the pathogen to utilize its energy on maintaining 

homeostasis, resulting in reduced cell growth, impaired virulence factors or cell death (Defoirdt et 

al., 2009; Laranja & Bossier 2020). A study on Artemia franciscana revealed that the release of β-

hydroxybutyrate via PHB hydrolysis provided energy to the host and inhibited the growth of 

pathogenic Vibrio campbellii (Defoirdt et al., 2007).  
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Figure 1: Effect of PHB on shrimp disease control. PHB supplemented in shrimp feed undergoes 

microbial or enzymatic degradation resulting in the production of butyric acid which shows anti-

pathogenic and immune boosting activity along with promoting beneficial gut microorganisms. 

 

The supplementation of PHB feed along with PHB degrading microbes improves the 

digestion and efficiency of the polymer feed (Gowda & Shivakumar, 2019). PHB-degrading 

microbes isolated from European sea bass, Siberian sturgeon, and giant river prawn when fed to 

brine shrimp larvae along with PHB diet increased the survival rate during Vibrio campbellii LMG 

21363 infection (Liu et al., 2010). Research shows that the PHB also alters the gut microbiome of 

the host and enhances the growth of beneficial microbes and inhibits the potential pathogenic 

growth (Laranja & Bossier 2020). 
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PHB as anti-infectives and immune stimulator 

Infectious diseases are a huge burden in shrimp aquaculture industries worldwide and the 

alarming increase of antimicrobial resistance in them limits the option of antibiotic therapy 

(Seethalakshmi et al., 2021). Polyhydroxy butyrates can be used in aquaculture practices as an 

effective alternative to antibiotics as they act as immune stimulating agents (Asiri and Chu 2020). 

Several studies have reported the anti-infective (Defoirdt et al., 2007; Laranja et al., 2014) and 

immune stimulating properties of PHB (Van Cam et al., 2009; Laranja et al., 2017; Baruah et al., 

2015). PHB exerts immune stimulatory activity by inducing Hsp70 biosynthesis, which further 

activates immune regulated genes such as tgase, proPO and ftn (Baruah et al., 2015). Hemocytes 

are important components of prime immune system and they have significant role in improving 

cellular and humoral immune responses in shrimp (Robohm 1984; Jiravanichpaisal et al., 2006). 

Shrimp fed with PHB also exhibits enhanced levels of hemocyte, which could contribute to their 

enhanced immune response (Kiran et al., 2020). Moreover, PHB diets are also reported to activate 

specific immune response in invertebrates. A study by Suguna et al. (2014) concluded that PHB 

diets enhances total peroxidases activity, serum lysozyme activity and antiprotease activity. 

Another mechanism that could contribute to the immune stimulating property of PHBs could be 

their ability to enhance the expression of mTOR signaling-related genes like TOR, 4E-BP, eIF4E2 

and eIF4E1α, by inhibiting autophagy (Duan et al., 2017; Rojas-Morales et al., 2016). 

Vibriosis is a serious concern in aquaculture settings and accounts to huge economic losses 

(Lai et al., 2015). In addition to its immune stimulatory activities, PHB have also been reported to 

possess antibacterial activity. Monomeric components of PHB are capable of inhibiting Vibrio 

pathogens under in vitro conditions (Halet et al., 2007). The PHB polymer upon reaching shrimp 

intestine gets hydrolyzed to monomeric forms like short-chain β-hydroxy butyric acid, and can 

provide resistance to Vibrio infections (Defoirdt et al., 2007). In vitro studies also shows that PHB 

can also suppress swimming motility of Vibrio pathogens which is an important virulence factor 

to invade and colonize host cells efficiently (Van Hung et al., 2018). Elevated concentrations of 

PHB are also found to inhibit virulence factors in Vibrio spp. such as phospholipase expression 

and haemolysis, but did not suppress biofilm formation (Van Hung et al., 2018). PHB molecules 

synthesized from Brevibacterium casei MSI04 attenuated the expression of virulence factors like 

haemolysin, bioluminescence, motility and colonization capacity (Kiran et al., 2016).  Also, these 

PHB molecules degrades the N-acyl-homoserine lactone and quorum-sensing signaling cascade, 
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which contributes to impairment of biofilm formation in bacterial pathogens (Kiran et al., 2016).  

It can be understood from these studies that PHB molecules from different sources exhibit varying 

anti-virulent properties. Therefore, it will be worthy to investigate the factors that are responsible 

for such divergent biological activities. 

 

Influence of PHB on shrimp microbiome 

Aquatic species are continually exposed to their surrounding water and any changes in their 

surrounding microbiome or intestinal microbiome can upset the health and functioning of the host 

(Rajeev et al., 2020). Several studies have pointed out the influence of diet on the shrimp 

microbiome (Daniel et al., 2014; Prathiviraj et al., 2021) and therefore a healthy microbiome of 

shrimp can be modulated by providing formulated dietary regimens. This not only reduces the use 

of antibiotics for shrimp disease management, but also makes shrimp produces more organic and 

safer to consume.  

The normal microbiome of Penaeus monodon comprises of phyla Gammaproteobacteria, 

Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria (Rungrassamee et al., 2014). 

Alterations in the microbial community of shrimp intestine can facilitate the colonization of 

pathogenic bacteria (Holt et al., 2021). It has become an established fact that the gut microbiome 

is closely interconnected to the immune system of host (Sekirov et al., 2010) and a depletion in 

microbial diversity is often predicted to be the chief reason for pathogenesis (Holt et al., 2021).  

PHB supplementation has been reported to increase the abundance of beneficial microflora 

in the intestine (Qiao et al., 2020). Mesorhizobium is a crucial bacterium for sustaining the normal 

growth of shrimp and its absence has been found to cause imbalance in the intestinal flora of starved 

shrimp (Dai et al., 2018). PHB diets has been proven to increase the abundance of this bacterium 

in gibel carp, (Qiao et al., 2020) and hence can be expected to show similar results in shrimp as 

well. The microbiome modulation activity of PHB diet could be because of the fact that PHB gets 

monomerized to SCFA at intestine and SCFA can further promote the growth of probiotic bacteria 

in the intestine (Forchielli and Walker 2007). SCFA in the intestine also modulates immune 

response and metabolic output of the host (Rajeev et al., 2021). Dietary supplementation of PHB 

was found to enrich the beneficial bacteria such as Bacillus, 

Lactococcus, Lactobacillus, Clostridium and Bdellovibrio in L. vannamei (Duan et al., 2017). 

Another study proved that amorphous PHB extracted from Halomonas sp. enriched the symbiotic 
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microbial population of shrimp intestine and decreased the abundance of Vibrio sp. much lower 

than crystalline PHB (Gao et al., 2019).  

 

Conclusion 

The extensive use of antibiotics in shrimp aquaculture has led to the emergence of antibiotics 

resistance, and this calls for an alternative disease treatment strategy. Biopolymers due to their 

biodegradable nature is a suitable eco-friendly option. The use of PHB in shrimp disease 

management is of huge interest these days due to its anti-pathogenic and immune stimulating 

abilities. PHB exerts its activity by microbial or enzymatic degradation into β-hydroxybutyric acid 

which is known for its anti-infective and immune stimulating activities. Marine PHB producing 

microbes are found to be a great source of PHB when compared to chemically synthesized PHB. 

The use of PHB also positively modulates gut microbiome composition of the shrimp. However, 

the exact mechanism of PHB degradation and its antimicrobial effect is still unclear.  Therefore, 

further research is required to understand the exact mechanism of PHB degradation. The use other 

biopolymers for disease treatment in aquaculture could also be studied, which would provide better 

environmental friendly treatment options. Therefore, the use of PHB could be better alternative to 

harmful antibiotics in shrimp disease management. 
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