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Abstract 

 

Aquaculture is facing a challenge in order to search new alternative nutritional sources to generate highly 

digestible and profitable diets for aquaculture species. In addition, the understanding of changes in digestive 

capacity in fish species with aquaculture potential is of relevance importance, as the capacity of assimilation 

of different nutrients may change during the juvenile development of the species. Numerous research has 

been focused on understanding the changes and adaptations of the development and capacities of the digestive 

system during the early ontogeny of fish, minimizing the importance of possible changes during juvenile 

ontogeny, as a trigger for the grow-out efficiency increase in fish culture. 

Thus, few studies address the digestive changes during juvenile fish ontogeny and their implications in the 

ability to assimilate different nutritional sources, considering that there should be no changes during this 

stage, which in general represents the period of grow-out until commercial size, prior to their reproductive 

stages. 

 

The present work deals with the importance to characterize changes the digestive capacity during grow-out on 

the spotted rose snapper (Lutjanus guttatus). Comparative studies of juvenile sizes of the species (20 to 400 

grams) have shown existence of changes in the optimum alkaline protease activity, as well as a diversification 

and increase in the number of digestive enzymes of the alkaline phase in relation to juvenile ontogeny, 

resulting in changes of in vitro hydrolysis degree and total release of amino acids from different protein 

sources. 
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Introduction 

 

Based on their eating habits and digestive morphology, fish are classified as 

detritivores, herbivores, omnivores or carnivores. Independent of the classification of 

dietary habits, fish are able to modify their digestive behavior and metabolism in response 

to changes in dietary sources as well as food availability (Rust, 2002; Pérez-Jiménez et al. 

2009).  Thus, growth and efficiency caused by the ingestion of a food in fish will depend on 

its physiological and biochemical ability to digest and transform nutrients, however many 

biotic and abiotic factors can influence the physiological state of the fish and therefore, the 

processes related to the digestion, absorption and transformation of these nutrients (Furnè et 

al. 2008).  

Due to the rapid growth of the aquaculture sector, as well as the emergence of new 

species with aquaculture potential, there are currently a large number of researches related 

to development of formulated diets with the objective to search new ingredient sources of 

low cost and high digestibility.  During ingredients searching, it is important to understand 

the digestive capacity of the species of interest, where the understanding of the number and 

type of digestive enzymes, their enzymatic activity, as well as the affinity that present to 

different nutritional sources, will be important for the design of new formulations that tend 

to generate a sustainable aquaculture industry.  

From digestive enzymes, proteases play a key role in digestion, which translates 

into high growth and survival. The proteases found within the digestive organs of fish are 

responsible for catalyzing the hydrolysis of peptide bonds (Klomklao, 2008), which 

includes enzymes such as pepsin, gastricins, trypsins, chymotrypsins, collagenase, elastase, 

carboxypeptidases and carboxylesterases (Haard, 1994; Simpson, 2000), where trypsin, 

chymotrypsin and pepsin are considered as the most important digestive enzymes due to 

their abundance and high proteolytic activity according to studies in different fish species 

(Castillo-Yáñez et al. 2004, 2005, 2006; Klomklao et al. 2004, 2007). 

In fish, a great effort has been made in understanding the changes in physiological 

digestive capacity during the early ontogeny of different fish species, which has promoted 

the development of zootechnics in larval and juvenile production of fish (Kolkovski, 2001; 

Zambonino-Infante and Cahu, 2001; Lazo et al. 2007; Rønnestad et al. 2007; Álvarez-
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González et al. 2008; Galaviz et al. 2012; Salze et al. 2012; Moguel-Hernández et al. 

2013). 

Digestibility of nutrient or diet depends on its chemical composition, type of 

ingredients and digestive capacity of the species to breakdown macronutrients to 

micronutrients to be absorbed (Lemos & Tacon 2011).  The major criteria to determine the 

nutritional value of protein sources seems to be apparent digestibility coefficient (ADC) 

(Dimes et al. 1994) in which, total assimilation (digestion and absorption) of specific 

nutrients are obtain by feces collection and analyses.  By the other side, pH Stat system is a 

practical tool to conduct in vitro measurement using the degree of hydrolysis (DH%) as 

criteria, providing multiple advantages such as: specific response by using standardized 

species enzymes, stable conditions, rapid, precise, test different ingredients in small 

amounts and appropriate for different ingredients sources, include marine-based, animal 

and plant ingredients (Lemos et al. 2009; Yasumaru & Lemos 2014).  Actually, great 

interest and efforts exist for standardization of pH Stat method in fish species (Dimes et al. 

1994; El-Mowafi et al. 2000; Tibbetts et al. 2011a, b; Yasumaru & Lemos 2014) and 

crustaceans (Ezquerra et al. 1997; Lemos et al. 2000; Lemos et al. 2009; Perera et al. 

2010), because main limitation in pH-Stat assays seems to be the complete knowing of 

enzymes origin and activities, given that, variations in species, fish size/age and phenotype 

could generate poor reproducibility over in vitro digestion assays (Tibbetts et al. 2011a). 

Few studies in aquatic organisms aboard enzyme changes or diversification during 

juvenile or adult ontogeny in a same species.  Reports in species such as roach (Rutilus 

rutilus L.), cuban gambusia (Gambusia punctata), Japanese eel (Anguilla japonica) and 

tilapia (Oreochromis niloticus L.) showed that proteolytic activities and zymogens could 

differ during juveniles/adults stages in the same species (Chiu & Pan 2002; Kuzʼmina 

1996; Falcón-Hidalgo et al. 2011; Unajak et al. 2012). 

Some consistent examples about advantages related to the presence of some 

digestive isoenzymes in aquatic organisms exist, where oyster (Crassostrea gigas) presents 

a genetic polymorphism in two alpha-amylase genes (AMYA and AMYB), that are related 

to growth (Prudence et al. 2006).  Spiny lobster (Panulirus argus) presents genetic 

variation in digestive trypsin pattern (three phenotypes; A, B and C), that generate in vitro 

differences in digestion efficiency over different protein sources (Perera et al. 2010, 2015). 
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In this sense, Atlantic salmon (Salmo salar) is the most studied fish, where fish possessing 

a certain trypsin phenotype (TRP-2*92), shows better growth rate and/or feed conversion 

efficiency, related with protein digestion capacity (Bassompierre et al. 1998; 

Rungruangsak-Torrissen et al. 1998; Torrissen et al. 1987; Torrissen 1991). 

Hence, understanding of digestive physiological aspects that directly affects feed 

efficiency and growth in the target species is required.  The species studied is the spotted 

rose snapper (Lutjanus guttatus), which is part of the Lutjanidae family, consisting of 

predatory fish with variable feeding habits, where all are carnivores, feeding mainly on fish 

and benthic crustaceans (Allen 1987; Vázquez et al. 2008). In the species, great efforts 

have already been made in the search for alternative protein sources for the manufacture of 

feeds in the juvenile stage, in order to reduce dependence on fishmeal, however studies 

focused on differences in capacity digestion during juvenile ontogeny are lack.  Therefore, 

the objective of the present work was to characterize the digestive proteases in a 

comparative way during the juvenile ontogeny of the spotter rose snapper and determine 

the possible differences in protein digestive capacity using in vitro techniques. 

 

Material and Methods 

 

Experimental animals 

Fish for this study were obtained from the Laboratory of Reproduction and Marine 

Finfish Hatchery (CIAD), Sinaloa, México, where all juvenile stages were obtained from 

single spawning batch, conducted as described by Álvarez-Lajonchère et al. (2012). After 

one batch larval culture, all juvenile fish continued under normal culture (nursery step) and 

fattening process, until were collected in different times from one cycle.  According to their 

wet weight, fish where classified in three groups (all considered in the juvenile stage): early 

juvenile (EJ; 21.3±2.6 g; 3 months after hatchery, MAH), middle juvenile (MJ; 190±4.4 g; 

7 MAH) and late juvenile (LJ; 400±11.5 g; 12 MAH). Fish were adapted to control diet 

reported by Silva-Carrillo et al. (2012).  Fish were starved for 24 hours to ensure the 

emptiness of the gut, euthanized ethically by a single puncture in the head with scalpel and 

immediately dissected to extract the digestive tract.  
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Dissection and extract preparation 

The digestive tract of each fish was individually divided into five segments: 

stomach (ST), pyloric caeca (PC), and intestine in three sections (proximal (PI), middle 

(MI) and distal intestine (DI). All of the procedures were conducted at temperatures of 0-4 

°C.  All segments were frozen individually at -64 °C until the assay was conducted. Prior to 

analysis, segment was diluted in a ratio of 1:10 (wet weight: volume) in a physiological 

saline solution (NaCl 9g L-1) and ice-cold-homogenized with an Ultra-Turrax homogenizer.  

Homogenates were centrifuged (8500 × g) at 4 °C for 15 min, and the supernatant was used 

to perform enzyme activity assays (Matus-de-la-Parra et al. 2007). 

 

Enzyme activity assay 

The pepsin-like or total acid protease activity was measured by a modified method of 

Sarath et al. (1989), with denatured hemoglobin (2 % pH 2) as substrate.  Alkaline protease 

activity was estimated by method of Walter (1984) using casein as substrate.  The trypsin 

activity was determined by modified method of Erlanger et al. (1961), using Nα-benzoyl-L-

arginine-4-p-nitroanilide hydrochloride (BAPNA 1 mmol L-1) as substrate.  The protein 

content of the supernatant solution was determined by Bradford assay (1976) using bovine 

serum albumin as the standard.  One unit (U) of enzymatic activity was defined as the 

amount of enzyme that produced 1 µg of product released per minute.  Tyrosine amount 

liberated from haemoglobin and casein hydrolysis was determined at 280 nm, while amount 

of p-nitroaniline liberated from BAPNA was determined at 410 nm. 

1) Total activity (Units ml-1) = [Δabs*reaction final volume (ml)]/[MEC*time 

(min)*extract volume (ml)] 

2) Specific activity (Units mg prot-1) = Total activity/soluble protein (mg) 

Δabs represents the increase in absorbance, and MEC represents the molar extinction 

coefficient of tyrosine or p-nitroaniline (0.005 and 0.008 mL/µg/cm, respectively). 

 

Characterization of digestive enzymes 

Pepsin-like, total alkaline protease and trypsin were characterized by determining 

the relative activity (%) as a function of pH and temperature.  The temperature effect for 

pepsin-like was measured from 10 to 50 °C; alkaline protease and trypsin were measured 
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from 10 to 60 °C, with similar assay conditions as previously described.  The pH effect on 

digestive activity was measured at 37 °C, and the buffers were in range from pH 1 to 10 

using buffers as previous described by Matus-de-la-Parra et al. (2007). 

In addition, characterizations of acid and alkaline proteases were performed 

according to Guerrero-Zárate et al. (2014) using specific inhibitors.  Pepstatin A (1 mmol 

L-1) was used as an inhibitor of acid proteases from stomach and alkaline protease activity 

inhibition in pyloric caeca and intestine sections were performed using the following 

inhibitors: 250 mmol L-1 soybean trypsin inhibitor (SBT1), 10 mol L-1 N-tosyl-L-phenyl-

chloromethyl ketone (TPCK), 100 mmol L-1 phenylmethylsulfonyl fluoride (PMSF), 10 

mmol L-1 Nα-Tosyl-L-lysine chloromethyl ketone hydrochloride (TLCK), 10 mmol L-1 

1,10-Phenanthroline (Phen) and 250 mmol L-1 Type II-Turkey egg Ovomucoid (Ovo). 

 

Chemical analysis 

The moisture, protein, lipid and ash levels in the test ingredients were determined 

using standard methods AOAC (2000).  The samples were homogenized and dried at 105 

°C by 24 h prior to the chemical analyses.  The level of crude protein was determined using 

micro-Kjeldahl method by Labcocnco System (Labconco, Kansas City, MO).  The lipid 

content was analyzed using a micro Foss Soxtec Avanti 2050 Automatic System (Foss 

Soxtec, Hogan€as, Sweden) after extraction with petroleum ether and ash content was 

determined by calcination of the samples in a muffle furnace at 550 °C (Fisher Scientific 

International, Inc. Pittsburgh, PA, USA). NFE was determined by the difference between 

sums of all nutrients.  

 

In vitro degree of hydrolysis (DH) 

Digestibility of 13 different protein sources was evaluated by in vitro pH-Stat 

system Tritando Meltrohm 901, where list of ingredients used is summarized in Table 1. In 

vitro hydrolysis assays were performed with crude extracts from stomach (St) or pyloric 

caeca-intestine (PC-I) only in early and late juvenile stages.  To determine protein degree of 

hydrolysis (DH), every single protein source was incorporated in a concentration of 8 mg 

ml-1 to be used as substrate solution, according to Saunders et al. (1972) and modified by 

Dimes & Haard (1994).  For both juvenile stages, St extracts were adjusted to be added in 
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substrate solution at 193 U mL-1 and start acid hydrolysis at pH 3.0 in continuous agitations 

for 15 min (900 s) at 37 °C. Hydrochloric acid (HCl 0.1N) spent to maintain constant pH 

3.0, was recorded every 100 seconds.  Alkaline hydrolysis degree was performed adding 

PC-I pool extracts.  As previously described, extracts from PC-I were adjusted to be added 

in the substrate solution at 23 U mL-1 and start alkaline hydrolysis at pH 8.0 in continuous 

agitation for 45 min (2700 s) at 37 °C. Sodium hydroxide (NaOH 0.1N) spent to maintain 

constant pH 8.0 was recorded every 250 seconds.  All assays were performed by triplicated 

and procedure was performed for both juvenile stages under same parameters.  The DH was 

calculated using the algorithm according to Adler-Nissen (1986). 

During pH-Stat hydrolysis reaction, samples of mixture reactions (40 μl) were 

collected every 100s for acid hydrolysis reaction and every 250s for alkaline hydrolysis 

reaction to perform amino acid quantification analysis. 

Table 1. Nutrient composition of protein sources used in assays 

PROTEIN SOURCE Abbreviation %PROTEÍN %LIPIDS %ASH %NFE 

Casein a Cas 90 1.2 ---- ---- 

Hemoglobinb Hm 90 ˂ 1 ---- ---- 

Fish meal c FM 70.7 9.0 12.9 7.41 

Tuna by products meal 

d 

TM 59 14.9 22.4 3.61 

Krill meal e KM 56.7 19.6 9.6 14.1 

Squid meal e SM 68.5 2.6 11.6 17.3 

Meat porcine meal f MPM 59.7 10.7 12.8 16.8 

Meat and bovine meal f MBM 49 13.8 25.1 12.1 

Poultry by products 

meal f 

PM 61.6 15.3 10.4 12.7 

Wheat gluten meal g WGM 81.1 0.73 1.2 16.9 

Corn gluten meal g CGM 72.7 3.4 1.4 22.5 

Soybean meal f SBM 47.3 0.66 7.0 45.0 

Canola meal f CM 42.8 2.1 7.2 47.8 

Control diet h D-Control 45.5 10.5 9.9 34.1 

aHammarsten quality Casein, Research Organics # Catalog 1082C, bBovine erythrocytes US Biological # Catalog H1850, cPremium grade fish meal was 

obtained from Selecta de Guaymas, S.A. de C.V. Guaymas, Sonora, México, dMaz Industrial, S.A de C.V. Mazatlán, Sinaloa, México, ePROAQUA, S.A. de 

C.V. Mazatlán, Sinaloa, México, fProteínas marinas y agropecuarias S.A. de C.V., Guadalajara, Jalisco, gDroguería Cosmopolita, S.A. de C.V. México, D.F., 

México, hDiet manufactured in CIAD for snapper feeding as a reference diet. 
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Total amino acid release (TAAR) 

 

Total amino acids (AA) released analysis was performed according to Church et al. 

(1893).  An o-phtaldialdehyde (OPA) solution was prepared with 50 ml of sodium 

tetraborate 100 mmol l-1, 5 ml of SDS at 20%, 80 mg of OPA diluted in 1ml of methanol 

and 0.2 ml of β-mercaptoethanol, solution was mixed and brings to 100 ml with distilled 

water. Briefly, 20 µl of the samples collected in digestion mixture reactions were fixed in 

20 µl of 12% TCA and centrifuged at 14000 rpm during 15 min.  Supernatant samples of 

10 µl were added to 1 ml of OPA solution and absorbances were read at 340 nm. TAAR 

was calculated using standard curve made with decrees L-leucine concentrations.  

 

Zymogram analyses 

Electrophoresis techniques were performed in Mini PROTEAN 3 Cell (Bio- Rad) 

with four plates vertical gels of 8x10x0.075 cm with 10 sample capacity per plate.  For the 

analysis of acid proteases from stomach, electrophoresis was run under non-denaturing 

native conditions (Native-PAGE) composed by continuous acrylamide gel (10 %) in buffer 

Tris (25 mmol l-1) and glycine (192 mmol l-1, pH 8.3, 80 volts) according to Davis (1964). 

Plate was composed by stacking gel with 4% poly-acrylamide (PAA) and resolving gel 

with 10% PAA.  Electrophoresis was run under denaturalizing conditions (SDS-PAGE), 

with SDS 0.1 % in buffer Tris (25 mmol l-1) and glycine (192 mmol l-1, pH 8.3, 100 volts), 

according to Laemmli (1970) and adapted by García-Carreño et al. (1993). 

After Native-PAGE electrophoresis, the gels were treated to reveal proteases 

isoforms according to the procedure of Díaz-López et al. (1998).  The gel was submerged 

for 90 min at 25 °C in solution containing 0.25% hemoglobin (0.1 mol l-1 Glycine-HCl 

buffer, pH 2.0).  The gels were fixed in trichloroacetic acid (12%) solution by 15 minutes.  

After alkaline SDS-PAGE electrophoresis, the gels were washed and directly incubated for 

30 min at 5 °C in 0.5% casein solution (Tris–HCl 0.1 mol l-1 buffer, pH 9).  The gels were 

then incubated for 90 min in the same solution at 37 °C.  Finally, the gels were washed and 

fixed as previously described.  For acid and alkaline gels, after areas of enzyme activity had 

been developed, the gels were stained according to Weber and Osborn (1969), using 0.1% 

Coomassie brilliant blue R-250 solution.  Electrophoretic techniques were complemented 
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with the use of specific inhibitors previous described.  Molecular weight marker was 

applied to each SDS-PAGE.  Molecular weight (MW) of each band in the SDS-zymograms 

(alkaline protease) was calculated by a linearly adjusted model between the Rf and the 

decimal logarithm of MW protein markers. 

 

Statistical analysis 

 For comparison, the percent inhibition and percent of relative activity in enzyme 

characterization and pH-Stat degree of hydrolysis was arcsin (x1/2) transformed. The data 

for each parameter were tested for normality and homoscedasticity.  One- or two-way 

ANOVA analyses were run when required.  When differences were found, Tukey’s HSD 

test was used (P≤0.05).  Total amino acids released (mg L-Leucine equivalent) was plotted 

describing relationship between cumulative amino acid release and time of digestion for 

different meals with linear adjustment (y = a + bx). Differences among rate of digestion 

(slopes) between protein sources in specific hydrolysis phase and juvenile stage were 

assessed with ANCOVA (P≤0.05) (Zar 1984).  All of the statistical analyses were 

performed using Statistica 7.0 Software for Windows (StatSoft, USA). 

 

Results 

 

Enzyme activity assays 

The acid and alkaline proteases activities of different digestive tract sections in three 

juvenile stages are presented in Table 2.  

 

Table 2. Protease activity in the stomach (S), pyloric caeca (PC), proximal (PI), middle 

(MI) and distal intestine (DI) in three juvenile stages of spotted rose snapper Lutjanus 

guttatus. 

 Specific Activity (U mg protein-1) of crude extract 

Stage ST  PC PI MI DI 

EJ 1754.4±307.8c  17.4±5.9b 15.0±1.1c 15.6±2.9b 15.8±3.2c 

MJ 3864.2±796.0b  22.2±3.8b 20.0±2.4b 27.5±5.0a 23.0±3.8b 

LJ 6210.1±657.6a  32.3±4.2a 28.2±3.0a 29.1±6.4a 34.0±6.2a 
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The stomach acid proteolytic activity showed significantly higher specific activities 

(P≤0.001) value with increasing life stage.  No significant differences in specific activity of 

alkaline proteases were observed between pyloric caeca and intestine sections for all 

juvenile stages (P≤0.001).  Meanwhile, significantly higher specific activities in the LJ 

stage (P≤0.001) were found between stages when individual sections were compared.  The 

trypsin-like specific activity showed a significantly higher (P≤0.001) value in the EJ stage 

than MJ and LJ stages (Table 3). 

 

Table 3. Trypsin-like activity in the pyloric caeca in three juvenile stages of spotted rose 

snapper Lutjanus guttatus. Different superscript within rows indicate significant  

differences (P<0.05). 

Specific Activity (U mg protein-1) 

EJ MJ LJ 

82.50±2.24a 23.18±2.47b 22.77±9.66b 

 

Temperature and pH effect on acid and alkaline protease activity 

The three juvenile stages presented optimum temperature of acid proteases at 45°C 

(Fig. 1A) (P≤0.001).  The optimum temperature of total alkaline proteases was 55°C for EJ, 

50°C for MJ and LJ (Fig. 1B) (P≤0.001).  

The optimum activity of acid proteases was measured at pH 3 for EJ and LJ and at 

pH 2 for MJ, with 80 to 90% of remnant activity at pH 2 and 3, respectively (Fig. 1C) 

(P≤0.001).  Alkaline protease activity showed high relative activity (%) over a wide pH 

range (5-10) and an optimum at pH 9.0 in the three juvenile stages (Fig. 1D) (P≤0.001).  

Differences were found in relative activity percent at pH 5 between LJ (80%) and EJ, MJ 

(50%) (P≤0.001). 
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Figure 1. Temperature effects (°C) on the relative activity of acid (a) and alkaline proteases 

(b) and pH effects on the relative activity of acid (c) and alkaline proteases (d) in three 

juvenile stages of Lutjanus guttatus. 

 

Temperature and pH effect on trypsin activity 

The optimum temperature of trypsin was 50 °C for MJ and LJ, while EJ presented 

an optimum at 60 °C.  Differences were found in relative activity (%) between almost all 

temperatures tested (P≤0.001) (Fig. 2B).  Trypsin activity showed optimum activity at pH 9 

for all juvenile stages (Fig. 2B). 
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Figure 2. Temperature and pH effects on the relative trypsin-like activities in three juvenile 

stages of Lutjanus guttatus. 

Specific inhibitors effects  

Pepstatin A inhibited the total activities in stomach extracts in all juvenile stages.  

The percent of alkaline protease inhibition are summarized in Table 4.  In general, the 

inhibited percent of activity in total alkaline proteases was significantly higher (P≤0.001) in 

EJ using TLCK, PMSF, SBTI, Phen and Ovo compared to MJ and LJ, while no significant 

differences were found between inhibition percent with TPCK (P=0.2402). 

 

Table 4. The percent of activity inhibition in pyloric caeca after incubation with enzyme 

specific inhibitors in three juvenile stages of spotted rose snapper Lutjanus guttatus. 

 Percentage of activity inhibition 

Inhibitor type TPCK TLCK PMFS SBTI Phen Ovo 

EJ 11.7±4.8 a 14.2±1.3a 15.7±2.5a 54.9±6.6a 32.7±2.0a 18.5±1.2a 

MJ 9.9±2.6 a 6.1±0.6b 13.6±0.6a 25.8±5.4b 28.8±1.3b 7.3±0.5b 

LJ 6.6±2.1 a 7.9±1.3b 5.4±1.9b 16.1±3.9c 23.3±1.1c 6.3±1.0b 

Different superscript within columns indicate significant differences (P<0.05). 

 

In vitro degree of hydrolysis (DH) 

Hemoglobin presented the highest DH among all ingredients in acid digestion for 

both juvenile stages (P≤0.05).  Higher DH values differ in protein source between juvenile 

stages, where SBM (soybean meal), CM (canola meal) and D-control (control diet) showed 
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the higher DH values in LJ acid digestion, while TM (tuna by products meal), SBM and D-

control showed the highest DH values in EJ acid digestion. By the other side, DH values of 

TM, SM (squid meal) and CM showed differences between EJ and LJ stages in acid 

hydrolysis (P≤0.05) (Fig. 3A). 

Alkaline hydrolysis showed that FM (fishmeal) presented the higher degree of 

hydrolysis among all ingredients in LJ stage, while MBM (meat and bovine meal), WGM 

(wheat gluten meal), CGM (corn gluten meal) and D-control presented the highest DH 

among all ingredients in EJ stage (P≤0.05).  Eight of the ingredients tested, showed 

differences in DH between EJ and LJ stages in alkaline hydrolysis, including animal protein 

sources (FM, MPM (meat porcine meal), MBM, PM (poultry by products meal)) and 

vegetable protein sources (WGM, CGM, CM) and D-control, as protein mix from balance 

diet (P≤0.05) (Fig. 3B). 
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Figure 3. In vitro pH-stat degree of protein hydrolysis (DH) of feed ingredients using 

digestive enzyme extracts from L. guttatus early (20 g) and late juveniles (400g) from A) 

stomach and B) pyloric caeca. Lower-case show differences in EJ stage, upper-case show 

differences in LJ stage and asterisk show differences between juvenile stages (P<0.05). 

Values shown are means (n=3) ± standard deviation (error bars). 

Total amino acid release (TAAR) 

The kinetics of TAAR was assessed by analyzing the cumulative production of 

amino acid through time of digestion.  These relationships were best described by linear 

regressions, all of them with high determination coefficients (R2=0.90 to 0.98).  The rate of 

amino acid liberation were compared by ANCOVA and showed significant differences 

between ingredients in acid and alkaline hydrolysis in both juvenile stages (P≤0.05). 

For both juvenile stages, hemoglobin presented the highest TAAR.  Nevertheless, 

higher TAAR with stomach extracts in EJ stage was obtained by SM, followed by CM, 

SBM and KM (krill meal), while TM showed the lowest TAAR (P≤0.05) (Fig. 4A).  
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Results in TAAR by LJ stomach extract show higher values for SBM and CM, followed by 

MBM and WGM, while CGM showed the lowest TAAR (P≤0.05) (Fig. 4B). 

 

 

Figure 4. Kinetic of free amino acid released from ingredients using stomach enzyme 

extracts from L. guttatus a) early (20 g) and b) late juveniles (400g). Data points and 

regression lines of cumulative values against time for each meal are represented with the 

same symbol. Letters to the right of regression lines indicate differences (P≤0.05) among 

slopes. 

Alkaline hydrolysis in EJ stage showed higher TAAR by PM, followed by Cas 

(casein), MPM and TM, while SBM and CGM showed the lowest TAAR (P≤0.05) (Fig. 

5A).  Alkaline hydrolysis in LJ stage showed higher TAAR in MPM, followed by FM, 

while Cas and SBM showed the lowest TAAR values (P≤0.05) (Fig. 5B). 
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Figure 5. Kinetic of free amino acid released from ingredients using pyloric caeca-intestine 

enzyme extracts from L. guttatus a) early (20 g) and b) late juveniles (400g). Data points 

and regression lines of cumulative values against time for each meal are represented with 

the same symbol. Letters to the right of regression lines indicate differences (P≤0.05) 

among slopes. 

Zymogram analyses 

 

Electrophoresis under Native-PAGE conditions, reveal two bands with acid protease 

activity in both juvenile stages of SRS: one with an Rf of 0.72 and the other with an Rf of 

0.77, where both bands were completely inhibited by pepstatin A (Fig. 6).  
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Figure 6. Zymogram of acid proteases from the multienzymatic stomach extracts of early 

juvenile (EJ; 20g) and late juvenile (LJ; 400g) stages of L guttatus, with the action of 

pepstatin A inhibitor (PI) on the isoforms. 

Electrophoresis under SDS-PAGE conditions showed same band pattern in pyloric 

caeca and intestine sections, therefore results corresponds to all alkaline phase digestive 

tract in L. guttatus in a given juvenile stage.  Total of nine bands in PC-I extracts were 

observed between EJ and LJ stages bands (Fig. 7A and Fig. 7B , respectively; 98.1, 90.2, 

87.3, 71.4, 53.1, 40.6, 26.1, 19.8 and 16.7 kDa), referenced as first to ninth bands. 

 

Figure 7. Zymograms of alkaline proteases from the multienzymatic pyloric caeca and 

intestine extracts of A) Early juvenile of L. guttatus (20 g) and B) Late juvenile of L. 
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guttatus (400 g), with the action of the respective inhibitors on the isoforms. M: molecular 

weight marker (kDa). 

In the case of alkaline enzyme pattern in EJ stage, five bands were observed in the 

control (98.1, 87.3, 53.1, 40.6 and 19.8 kDa, representing, first, third, fifth, sixth and eight 

bands) (Fig. 7A).  Four additional bands were observed in LJ stage PC-I extracts, with MW 

of 90.2, 71.4, 26.1 and 16.7 (representing the second, fourth, seventh and ninth bands) with 

a total of nine bands (Fig. 7B).  

 

Discussion 

 

Although there are many investigations in characterization of digestive enzymes in 

different fish species, much of this research has focused on early ontogeny and / or 

characterization in a juvenile size of this species. During the early ontogeny of many fish 

species, there are successive changes in the activity and / or expression of different 

enzymes together with a rapid development of the digestive system and auxiliary organs 

(Zambonino-Infante & Cahu, 2001), that is helpful to close cultivation cycles of species 

with aquaculture potential. 

On the other hand, the characterization of digestive enzymes that have been carried 

out during juvenile stages, take for granted that the number, type and / or activities of 

digestive enzymes do not change throughout the juvenile stage, where some studies have 

approached this subject in some species (Unajak et al. 2012, Yasumaru & Lemos, 2014). 

The presence of changes in digestive capacity during juvenile stages of different species is 

of great importance, since these stages of life correspond in the majority of the fish 

aquaculture species to the phase of culture before harvest. Therefore, understanding of 

digestive changes and / or adaptations will serve as a basis for the formulation of specific 

diets for grow-out juvenile stages, in order to increase the productive yield. 

Thus, the present investigation serves as a basis for the development of research in 

different species with culture potential, where it is clear the existence of modifications in 

the digestive capacity of proteins in a same species during juvenile development. 
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Conclusion 

 

In conclusion, the digestive system of spotted rose snapper is highly efficient in the 

breakdown of protein. The high pepsin activities and the presence of two pepsin isoforms 

suggest the potential for hydrolysis of a wide range of protein sources joined to final 

alkaline digestion.  This potential increases with fish growth through juvenile stages in 

which a diversification in the type of alkaline enzymes exists, affecting the degree of 

hydrolysis of different protein sources and the rate and degree of absorption of total free 

amino acids.  Higher DH and TAAR values were documented in constituents such as fish 

and squid meal, animal porcine meal and poultry meal produced from recycled by-products 

and soybean meal and canola meal as vegetable products that provide better protein sources 

for use in the development of practical diets.  
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